An open API service indexing awesome lists of open source software.

https://github.com/real-yfprojects/uelis-words


https://github.com/real-yfprojects/uelis-words

Last synced: about 2 months ago
JSON representation

Awesome Lists containing this project

README

        

# uelis-words

## Install

- `whisper-rs` (deps)
- model from [here](https://huggingface.co/ggerganov/whisper.cpp), saved to `whisper.model` in root dir
- don't use `large` (?), use `large-v2` (install with `make large-v2` in `whisper.cpp`)
- directly use whisper? (more options, e.g. as vtt (detailed word timestamps), initial prompt to capture special stuff (e.g. erms, "special" words))

## Workflow

See installation(s) in `convert.sh`

1. login with credentials with a `POST` request at `https://video.ethz.ch/lectures/d-infk/2023/autumn/252-0025-01L.series-login.json`
2. fetch all lectures at `https://video.ethz.ch/lectures/d-infk/2023/autumn/252-0025-01L.series-metadata.json`
3. get more info for each new lecture at `https://video.ethz.ch/lectures/d-infk/2023/autumn/252-0025-01L/{}.series-metadata.json`
4. download the lowest resolution `.mp4` (`.mp3` quality is the same) to `videos/`
5. transcribe using `large-v2` from `whisper`, `vtt` format, language set to `de`, output to `outputs/`

## Run locally

1. download and install rust (stable should be enough)
2. `. env.sh` (load username & pwd into env vars)
3. `cargo run --release` (output in `videos/*.mp4`)
4. `pip install -U openai-whisper`
5. `bash transcribe.sh` (output in `outputs/*.vtt`, other format?)