Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/real0x0a1/objectdetection
Real-time Object Detection using YOLOv
https://github.com/real0x0a1/objectdetection
numpy opencv python python3
Last synced: 1 day ago
JSON representation
Real-time Object Detection using YOLOv
- Host: GitHub
- URL: https://github.com/real0x0a1/objectdetection
- Owner: real0x0a1
- License: mit
- Created: 2023-12-11T09:48:15.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-11T10:08:33.000Z (about 1 year ago)
- Last Synced: 2024-11-14T05:38:02.894Z (2 months ago)
- Topics: numpy, opencv, python, python3
- Language: Python
- Homepage:
- Size: 5.86 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Real-time Object Detection using YOLOv3
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
## Overview
This Python script uses the YOLOv3 (You Only Look Once) model for real-time object detection using a webcam feed. It detects objects in the frame and draws bounding boxes around them with labels and confidence scores.
## Prerequisites
- Python 3.x
- OpenCV (`cv2`)
- NumPy (`numpy`)## Installation
1. Clone the repository:
```bash
git clone https://github.com/Real0x0a1/ObjectDetection.git
```2. Install required dependencies:
```bash
pip3 install opencv-python numpy
```3. Download YOLOv3 weights file:
- YOLOv3 Weights: [Download YOLOv3 Weights](https://pjreddie.com/media/files/yolov3.weights)
- YOLOv3 Weights: `wget https://pjreddie.com/media/files/yolov3.weights`Place these files in the appropriate directories as mentioned in the script.
## Usage
Run the script:
```bash
python3 ObjectDetection.py
```Press 'q' to exit the real-time object detection.
## Customization
- Adjust confidence threshold: Modify the `confidence > 0.5` condition to change the confidence threshold.
- Customize YOLO file paths: Update the paths in the script based on your folder structure.## Author
- Ali (Real0x0a1)## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.