Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/reata/machinelearning
Machine Learning Jupyter Notebook
https://github.com/reata/machinelearning
Last synced: 18 days ago
JSON representation
Machine Learning Jupyter Notebook
- Host: GitHub
- URL: https://github.com/reata/machinelearning
- Owner: reata
- License: mit
- Created: 2017-06-15T05:59:21.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-12-23T12:56:24.000Z (about 7 years ago)
- Last Synced: 2024-12-04T20:40:45.553Z (3 months ago)
- Language: Jupyter Notebook
- Homepage: http://nbviewer.jupyter.org/github/reata/MachineLearning/tree/master/
- Size: 1.69 MB
- Stars: 0
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Support: Support Vector Machines.ipynb
Awesome Lists containing this project
README
MachineLearning
=========本项目包含机器学习的Jupyter Notebook
### 目录
1. 监督学习(Supervised Learning)
- [线性回归 Linear Regression](https://github.com/reata/MachineLearning/blob/master/Linear%20Regression.ipynb)
- [逻辑回归 Logistic Regression](https://github.com/reata/MachineLearning/blob/master/Logistic%20Regression.ipynb)
- [广义线性模型 Generalized Linear Models](https://github.com/reata/MachineLearning/blob/master/Generalized%20Linear%20Models.ipynb)
- [生成学习算法 Generative Learning Algorithms](https://github.com/reata/MachineLearning/blob/master/Generative%20Learning%20Algorithms.ipynb)
- [支持向量机 Support Vector Machines](https://github.com/reata/MachineLearning/blob/master/Support%20Vector%20Machines.ipynb)
2. 学习理论(Learning Theory)
- [学习理论 Learning Theory](https://github.com/reata/MachineLearning/blob/master/Learning%20Theory.ipynb)
- [正则化和模型选择 Regularization and Model Selection](https://github.com/reata/MachineLearning/blob/master/Regularization%20and%20Model%20Selection.ipynb)
- [应用机器学习 Advice on Applying Machine Learning](https://github.com/reata/MachineLearning/blob/master/Advice%20on%20Applying%20Machine%20Learning.ipynb)3. 非监督学习(Unsupervised Learning)
- [k均值聚类 k-Means Clustering](https://github.com/reata/MachineLearning/blob/master/k-Means%20Clustering%20Algorithm.ipynb)
- [高斯混合模型 Gaussian Mixture Models](https://github.com/reata/MachineLearning/blob/master/Gaussian%20Mixture%20Models.ipynb)
- [EM算法 The EM Algorithm](https://github.com/reata/MachineLearning/blob/master/The%20EM%20Algorithm.ipynb)
- [因子分析 Factor Analysis](https://github.com/reata/MachineLearning/blob/master/Factor%20Analysis.ipynb)
- [主成分分析 Principal Components Analysis](https://github.com/reata/MachineLearning/blob/master/Principal%20Components%20Analysis.ipynb)
- [独立成分分析 Independent Components Analysis](https://github.com/reata/MachineLearning/blob/master/Independent%20Components%20Analysis.ipynb)4. 强化学习(Reinforcement Learning)
- [强化学习和控制 Reinforcement Learning and Control](https://github.com/reata/MachineLearning/blob/master/Reinforcement%20Learning%20and%20Control.ipynb)### 参考资料
1. [Andrew Ng在斯坦福大学工学院的机器学习公开课CS229](https://see.stanford.edu/Course/CS229)
2. [Scikit Learn官方文档](http://scikit-learn.org/stable/documentation.html)
3. [Udemy--Machine-Learning](https://github.com/jmportilla/Udemy---Machine-Learning)
4. [机器学习实战](https://book.douban.com/subject/24703171/)
5. [使用Matplotlib可视化优化算法](http://louistiao.me/posts/notebooks/visualizing-and-animating-optimization-algorithms-with-matplotlib/)