Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/recruit-tech/codable-model-optimizer

meta-heuristics solver for easy modeling
https://github.com/recruit-tech/codable-model-optimizer

Last synced: about 11 hours ago
JSON representation

meta-heuristics solver for easy modeling

Awesome Lists containing this project

README

        

.. image:: https://img.shields.io/pypi/v/codableopt.svg
:target: https://pypi.python.org/pypi/codableopt

.. image:: https://readthedocs.org/projects/codable-model-optimizer/badge/?version=latest
:target: https://codable-model-optimizer.readthedocs.io/ja/latest/?badge=latest
:alt: Documentation Status


=========================
codable-model-optimizer
=========================
Optimization problem meta-heuristics solver for easy modeling.

.. index-start-installation-marker

Installation
================

Use pip
-------

.. code-block:: bash

$ pip install codableopt

Use setup.py
------------

.. code-block:: bash

# Master branch
$ git clone https://github.com/recruit-tech/codable-model-optimizer
$ python3 setup.py install

.. index-end-installation-marker

Example Usage
=================

Sample1
-------------------

.. index-start-sample1

.. code-block:: python

import numpy as np
from codableopt import *

# set problem
problem = Problem(is_max_problem=True)

# define variables
x = IntVariable(name='x', lower=np.double(0), upper=np.double(5))
y = DoubleVariable(name='y', lower=np.double(0.0), upper=None)
z = CategoryVariable(name='z', categories=['a', 'b', 'c'])

# define objective function
def objective_function(var_x, var_y, var_z, parameters):
obj_value = parameters['coef_x'] * var_x + parameters['coef_y'] * var_y

if var_z == 'a':
obj_value += 10.0
elif var_z == 'b':
obj_value += 8.0
else:
# var_z == 'c'
obj_value -= 3.0

return obj_value

# set objective function and its arguments
problem += Objective(objective=objective_function,
args_map={'var_x': x,
'var_y': y,
'var_z': z,
'parameters': {'coef_x': -3.0, 'coef_y': 4.0}})

# define constraint
problem += 2 * x + 4 * y + 2 * (z == 'a') + 3 * (z == ('b', 'c')) <= 8
problem += 2 * x - y + 2 * (z == 'b') > 3

print(problem)

solver = OptSolver()

# generate optimization methods to be used within the solver
method = PenaltyAdjustmentMethod(steps=40000)

answer, is_feasible = solver.solve(problem, method)
print(f'answer:{answer}, answer_is_feasible:{is_feasible}')

.. index-end-sample1

Sample2
-------------------

.. code-block:: python

import random
from itertools import combinations

from codableopt import Problem, Objective, CategoryVariable, OptSolver, PenaltyAdjustmentMethod

# define distance generating function
def generate_distances(args_place_names):
generated_distances = {}
for point_to_point in combinations(['start'] + args_place_names, 2):
distance_value = random.randint(20, 40)
generated_distances[point_to_point] = distance_value
generated_distances[tuple(reversed(point_to_point))] = distance_value
for x in ['start'] + args_place_names:
generated_distances[(x, x)] = 0

return generated_distances

# generate TSP problem
PLACE_NUM = 30
destination_names = [f'destination_{no}' for no in range(PLACE_NUM)]
place_names = [f'P{no}' for no in range(PLACE_NUM)]
distances = generate_distances(place_names)
destinations = [CategoryVariable(name=destination_name, categories=place_names)
for destination_name in destination_names]

# set problem
problem = Problem(is_max_problem=False)

# define objective function
def calc_distance(var_destinations, para_distances):
return sum([para_distances[(x, y)] for x, y in zip(
['start'] + var_destinations, var_destinations + ['start'])])

# set objective function and its arguments
problem += Objective(objective=calc_distance,
args_map={'var_destinations': destinations, 'para_distances': distances})

# define constraint
# constraint formula that always reaches all points at least once
for place_name in place_names:
problem += sum([(destination == place_name) for destination in destinations]) >= 1

# optimization implementation
solver = OptSolver(round_times=4, debug=True, debug_unit_step=1000)
method = PenaltyAdjustmentMethod(steps=10000, delta_to_update_penalty_rate=0.9)
answer, is_feasible = solver.solve(problem, method, n_jobs=-1)

print(f'answer_is_feasible:{is_feasible}')
root = ['start'] + [answer[root] for root in destination_names] + ['start']
print(f'root: {" -> ".join(root)}')