Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/recynie/tsne-poster
PRML HW: t-SNE poster
https://github.com/recynie/tsne-poster
jupyter-notebook poster python3
Last synced: 29 days ago
JSON representation
PRML HW: t-SNE poster
- Host: GitHub
- URL: https://github.com/recynie/tsne-poster
- Owner: recynie
- Created: 2024-11-08T01:29:42.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-11-23T07:11:08.000Z (3 months ago)
- Last Synced: 2025-01-24T02:15:26.781Z (29 days ago)
- Topics: jupyter-notebook, poster, python3
- Language: Jupyter Notebook
- Homepage: https://github.com/recynie/tSNE-poster
- Size: 23.9 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# t-SNE Poster
This repository contains: some figures displayed in the poster, source codes, and references.## Figures
Kannada MNIST data set with t-SNE and PCA_t-SNE:

MNIST data set with t-SNE and PCA_t-SNE:
MNIST (0~4 digits) with t-SNE (the same figure in poster):
## References
original paper: [Visualizing Data using t-SNE](https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf)source of the notebook `visualizing-kannada-mnist-with-t-sne.ipynb` and references on visualizing Kannada MNIST: [Visualizing Kannada MNIST with t-SNE](https://www.kaggle.com/code/parulpandey/visualizing-kannada-mnist-with-t-sne) on Kaggle.
Visaulization tools: [Matplotlib](https://matplotlib.org/), [Vega-Altair](https://altair-viz.github.io/), and [Bokeh](https://bokeh.org/).
Datasets in our poster and original paper are available from:
[MNIST data set](http://yann.lecun.com/exdb/mnist/index.html) , [Kannada MNIST data set](https://github.com/vinayprabhu/Kannada_MNIST) , [Olivertti faces data set](http://mambo.ucsc.edu/psl/olivetti.html) , and [COIL-20](https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php).some other visualization:
OpenVaccine:[visualization](https://www.kaggle.com/competitions/stanford-covid-vaccine/discussion/186678) and [notebook](https://www.kaggle.com/code/vatsalparsaniya/openvaccine-t-sne-rapids)
[How to Use tSNE effectively](https://distill.pub/2016/misread-tsne/)
[Dimenionality reduction (PCA, tSNE)](https://www.kaggle.com/code/tilii7/dimensionality-reduction-pca-tsne)
[severity of diabetic retinopathy](https://www.kaggle.com/code/code1110/are-there-clusters-pca-tsne-vae)