https://github.com/redleader962/lecturedirigedrlimplementation
Directed reading on Deep Reinforcement Learning
https://github.com/redleader962/lecturedirigedrlimplementation
actor-critic deep-reinforcement-learning policy-gradient soft-actor-critic tensorflow universite-laval
Last synced: 7 months ago
JSON representation
Directed reading on Deep Reinforcement Learning
- Host: GitHub
- URL: https://github.com/redleader962/lecturedirigedrlimplementation
- Owner: RedLeader962
- Created: 2019-08-14T18:22:40.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2023-12-17T03:29:15.000Z (almost 2 years ago)
- Last Synced: 2025-04-13T09:14:07.520Z (7 months ago)
- Topics: actor-critic, deep-reinforcement-learning, policy-gradient, soft-actor-critic, tensorflow, universite-laval
- Language: Python
- Homepage:
- Size: 62.4 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
[](https://codecov.io/gh/RedLeader962/LectureDirigeDRLimplementation)

Repository for the course IFT-7014: Directed reading on
# Deep Reinforcement Learning
by **Luc Coupal**,
Université Laval,
Montréal, QC, Canada,
[Luc.Coupal.1@uLaval.ca](Luc.Coupal.1@uLaval.ca)
#### Under the supervision of:
**Professor Brahim Chaib-draa**,
Directeur du programme de baccalauréat en génie logiciel de l'Université Laval,
Québec, QC, Canada,
[Brahim.Chaib-draa@ift.ulaval.ca](Brahim.Chaib-draa@ift.ulaval.ca)
---

### Essay on:
- Maximum Entropy RL:
- **[Soft Actor-Critic](DRLimplementation/SoftActorCritic)**
- See my **blog post [_Soft Actor-Critic_ part 1: intuition and theoretical aspect](https://redleader962.github.io/blog/2020/SAC-part-1-distillarized/)** for more details on _SAC_ and _MaxEnt-RL_
- Classical RL:
- **[Actor-Critic](DRLimplementation/ActorCritic)**
- **[Basic policy gradient](DRLimplementation/BasicPolicyGradient)**
- **[A reflexion on design, architecture and implementation details](https://github.com/RedLeader962/LectureDirigeDRLimplementation/raw/master/Reflexion_on_design_and_architecture_LucCoupal_v1-1.pdf)**
---

[Watch mp4 video - Soft Actor-Critic Post training - Test run on 2X harder LunarLanderContinuous-v2 environment](video/SAC_video/SAC_postTraining_testOnHardLunar540p.mp4)
---
### Install instruction:
1) **Create & activate a new virtual environment** (I recommand using [conda](https://www.anaconda.com/distribution/), ... it's a walk in the park)
```bash
conda create --name myNewVirtualEnvironmentName python=3.7
conda activate myNewVirtualEnvironmentName
```
2) **Clone** the GitHub repository & **install dependencies**:
```bash
git clone https://github.com/RedLeader962/LectureDirigeDRLimplementation.git
cd LectureDirigeDRLimplementation
pip install -e .
```
This will automaticaly install those **dependencies** in `myNewVirtualEnvironmentName` :
'gym>=0.14.0'
'tensorflow>=1.14.0,<2.0',
'matplotlib>=3.1.0',
'numpy>=1.16.4',
'seaborn>=0.9.0',
'pytest',
3) **Enjoy** DRL script
---