An open API service indexing awesome lists of open source software.

https://github.com/redleader962/lecturedirigedrlimplementation

Directed reading on Deep Reinforcement Learning
https://github.com/redleader962/lecturedirigedrlimplementation

actor-critic deep-reinforcement-learning policy-gradient soft-actor-critic tensorflow universite-laval

Last synced: 7 months ago
JSON representation

Directed reading on Deep Reinforcement Learning

Awesome Lists containing this project

README

          

[![codecov](https://codecov.io/gh/RedLeader962/LectureDirigeDRLimplementation/branch/master/graph/badge.svg)](https://codecov.io/gh/RedLeader962/LectureDirigeDRLimplementation)
sonarcloundlogo

Repository for the course IFT-7014: Directed reading on
# Deep Reinforcement Learning

by **Luc Coupal**,
Université Laval,
Montréal, QC, Canada,
[Luc.Coupal.1@uLaval.ca](Luc.Coupal.1@uLaval.ca)

#### Under the supervision of:

**Professor Brahim Chaib-draa**,
Directeur du programme de baccalauréat en génie logiciel de l'Université Laval,
Québec, QC, Canada,
[Brahim.Chaib-draa@ift.ulaval.ca](Brahim.Chaib-draa@ift.ulaval.ca)

---
![TaxonomyActorCritic](./visual/TaxonomyDRLgithub.png)

### Essay on:
- Maximum Entropy RL:
- **[Soft Actor-Critic](DRLimplementation/SoftActorCritic)**
- See my **blog post [_Soft Actor-Critic_ part 1: intuition and theoretical aspect](https://redleader962.github.io/blog/2020/SAC-part-1-distillarized/)** for more details on _SAC_ and _MaxEnt-RL_
- Classical RL:
- **[Actor-Critic](DRLimplementation/ActorCritic)**
- **[Basic policy gradient](DRLimplementation/BasicPolicyGradient)**
- **[A reflexion on design, architecture and implementation details](https://github.com/RedLeader962/LectureDirigeDRLimplementation/raw/master/Reflexion_on_design_and_architecture_LucCoupal_v1-1.pdf)**

---

![Trained agent in action](video/SAC_video/SAC_gif/SAC_postTraining_testOnHardLunar540p24fps.gif)

[Watch mp4 video - Soft Actor-Critic Post training - Test run on 2X harder LunarLanderContinuous-v2 environment](video/SAC_video/SAC_postTraining_testOnHardLunar540p.mp4)

---

### Install instruction:
1) **Create & activate a new virtual environment** (I recommand using [conda](https://www.anaconda.com/distribution/), ... it's a walk in the park)
```bash
conda create --name myNewVirtualEnvironmentName python=3.7
conda activate myNewVirtualEnvironmentName
```
2) **Clone** the GitHub repository & **install dependencies**:
```bash
git clone https://github.com/RedLeader962/LectureDirigeDRLimplementation.git
cd LectureDirigeDRLimplementation
pip install -e .
```
This will automaticaly install those **dependencies** in `myNewVirtualEnvironmentName` :

'gym>=0.14.0'
'tensorflow>=1.14.0,<2.0',
'matplotlib>=3.1.0',
'numpy>=1.16.4',
'seaborn>=0.9.0',
'pytest',

3) **Enjoy** DRL script

---