Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/reedscot/icml2016
Generative Adversarial Text-to-Image Synthesis
https://github.com/reedscot/icml2016
Last synced: 2 months ago
JSON representation
Generative Adversarial Text-to-Image Synthesis
- Host: GitHub
- URL: https://github.com/reedscot/icml2016
- Owner: reedscot
- License: mit
- Created: 2016-06-02T21:58:41.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2018-09-05T16:45:56.000Z (over 6 years ago)
- Last Synced: 2024-08-03T23:03:29.514Z (6 months ago)
- Language: Lua
- Homepage: http://arxiv.org/abs/1605.05396
- Size: 552 KB
- Stars: 909
- Watchers: 40
- Forks: 214
- Open Issues: 31
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Github-Repositories - Generative Adversarial Text-to-Image Synthesis
README
###Generative Adversarial Text-to-Image Synthesis
Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak LeeThis is the code for our ICML 2016 paper on text-to-image synthesis using conditional GANs. You can use it to train and sample from text-to-image models. The code is adapted from the excellent [dcgan.torch](https://github.com/soumith/dcgan.torch).
####Setup Instructions
You will need to install [Torch](http://torch.ch/docs/getting-started.html), CuDNN, and the [display](https://github.com/szym/display) package.
####How to train a text to image model:
1. Download the [birds](https://drive.google.com/file/d/0B0ywwgffWnLLLUc2WHYzM0Q2eWc/view?usp=sharing) and [flowers](https://drive.google.com/file/d/0B0ywwgffWnLLMl9uOU91MV80cVU/view?usp=sharing) and [COCO](https://drive.google.com/open?id=0B0ywwgffWnLLamltREhDRjlaT3M) caption data in Torch format.
2. Download the [birds](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) and [flowers](http://www.robots.ox.ac.uk/~vgg/data/flowers/102) and [COCO](http://mscoco.org/dataset/#download) image data.
3. Download the text encoders for [birds](https://drive.google.com/open?id=0B0ywwgffWnLLU0F3UHA3NzFTNEE) and [flowers](https://drive.google.com/open?id=0B0ywwgffWnLLZUt0UmQ1LU1oWlU) and [COCO](https://drive.google.com/open?id=0B0ywwgffWnLLeVNmVVV6OHBDUFE) descriptions.
4. Modify the `CONFIG` file to point to your data and text encoder paths.
5. Run one of the training scripts, e.g. `./scripts/train_cub.sh`####How to generate samples:
* For flowers: `./scripts/demo_flowers.sh`. Add text descriptions to `scripts/flowers_queries.txt`.
* For birds: `./scripts/demo_cub.sh`.
* For COCO (more general images): `./scripts/demo_coco.sh`.
* An html file will be generated with the results:
####Pretrained models:
* [CUB GAN-INT-CLS](https://drive.google.com/open?id=0B0ywwgffWnLLSW84ZXRjdXhObzQ)
* [Flowers GAN-INT-CLS](https://drive.google.com/open?id=0B0ywwgffWnLLV0U4MGwzZ2JKT3c)
* [COCO GAN-CLS](https://drive.google.com/open?id=0B0ywwgffWnLLT0JqcEFrOG1iVVk)####How to train a text encoder from scratch:
* You may want to do this if you have your own new dataset of text descriptions.
* For flowers and birds: follow the instructions [here](https://github.com/reedscot/cvpr2016).
* For MS-COCO: `./scripts/train_coco_txt.sh`.####Citation
If you find this useful, please cite our work as follows:
```
@inproceedings{reed2016generative,
title={Generative Adversarial Text-to-Image Synthesis},
author={Scott Reed and Zeynep Akata and Xinchen Yan and Lajanugen Logeswaran and Bernt Schiele and Honglak Lee},
booktitle={Proceedings of The 33rd International Conference on Machine Learning},
year={2016}
}
```