Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/reedscot/icml2016

Generative Adversarial Text-to-Image Synthesis
https://github.com/reedscot/icml2016

Last synced: 2 months ago
JSON representation

Generative Adversarial Text-to-Image Synthesis

Awesome Lists containing this project

README

        

###Generative Adversarial Text-to-Image Synthesis
Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee

This is the code for our ICML 2016 paper on text-to-image synthesis using conditional GANs. You can use it to train and sample from text-to-image models. The code is adapted from the excellent [dcgan.torch](https://github.com/soumith/dcgan.torch).

####Setup Instructions

You will need to install [Torch](http://torch.ch/docs/getting-started.html), CuDNN, and the [display](https://github.com/szym/display) package.

####How to train a text to image model:

1. Download the [birds](https://drive.google.com/file/d/0B0ywwgffWnLLLUc2WHYzM0Q2eWc/view?usp=sharing) and [flowers](https://drive.google.com/file/d/0B0ywwgffWnLLMl9uOU91MV80cVU/view?usp=sharing) and [COCO](https://drive.google.com/open?id=0B0ywwgffWnLLamltREhDRjlaT3M) caption data in Torch format.
2. Download the [birds](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) and [flowers](http://www.robots.ox.ac.uk/~vgg/data/flowers/102) and [COCO](http://mscoco.org/dataset/#download) image data.
3. Download the text encoders for [birds](https://drive.google.com/open?id=0B0ywwgffWnLLU0F3UHA3NzFTNEE) and [flowers](https://drive.google.com/open?id=0B0ywwgffWnLLZUt0UmQ1LU1oWlU) and [COCO](https://drive.google.com/open?id=0B0ywwgffWnLLeVNmVVV6OHBDUFE) descriptions.
4. Modify the `CONFIG` file to point to your data and text encoder paths.
5. Run one of the training scripts, e.g. `./scripts/train_cub.sh`

####How to generate samples:

* For flowers: `./scripts/demo_flowers.sh`. Add text descriptions to `scripts/flowers_queries.txt`.
* For birds: `./scripts/demo_cub.sh`.
* For COCO (more general images): `./scripts/demo_coco.sh`.
* An html file will be generated with the results:



####Pretrained models:

* [CUB GAN-INT-CLS](https://drive.google.com/open?id=0B0ywwgffWnLLSW84ZXRjdXhObzQ)
* [Flowers GAN-INT-CLS](https://drive.google.com/open?id=0B0ywwgffWnLLV0U4MGwzZ2JKT3c)
* [COCO GAN-CLS](https://drive.google.com/open?id=0B0ywwgffWnLLT0JqcEFrOG1iVVk)

####How to train a text encoder from scratch:

* You may want to do this if you have your own new dataset of text descriptions.
* For flowers and birds: follow the instructions [here](https://github.com/reedscot/cvpr2016).
* For MS-COCO: `./scripts/train_coco_txt.sh`.

####Citation

If you find this useful, please cite our work as follows:

```
@inproceedings{reed2016generative,
title={Generative Adversarial Text-to-Image Synthesis},
author={Scott Reed and Zeynep Akata and Xinchen Yan and Lajanugen Logeswaran and Bernt Schiele and Honglak Lee},
booktitle={Proceedings of The 33rd International Conference on Machine Learning},
year={2016}
}
```