https://github.com/reichmla/lsp-python
lsp-python is a lightweight implementation of the least square projection (LSP) dimensionality reduction technique using a sklearn style API.
https://github.com/reichmla/lsp-python
clustering dimensionality-reduction dr least-squares-projection lsp mds multidimensional-scaling projection sklearn
Last synced: 9 days ago
JSON representation
lsp-python is a lightweight implementation of the least square projection (LSP) dimensionality reduction technique using a sklearn style API.
- Host: GitHub
- URL: https://github.com/reichmla/lsp-python
- Owner: reichmla
- License: mit
- Created: 2024-05-27T20:14:58.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-09-30T11:42:31.000Z (over 1 year ago)
- Last Synced: 2025-06-15T16:19:12.197Z (7 months ago)
- Topics: clustering, dimensionality-reduction, dr, least-squares-projection, lsp, mds, multidimensional-scaling, projection, sklearn
- Language: Python
- Homepage:
- Size: 258 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
32 control points | 64 control points | 256 control points | 512 control points
:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:
 |  |  | 
# lsp-python
lsp-python is a lightweight python implementation of the Least Square Projection (LSP) dimensionality reduction technique using sklearn style API.
The implementation is based on the paper "Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping", which can be cited using:
```
@ARTICLE{4378370,
author={Paulovich, Fernando V. and Nonato, Luis G. and Minghim, Rosane and Levkowitz, Haim},
journal={IEEE Transactions on Visualization and Computer Graphics},
title={Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping},
year={2008},
volume={14},
number={3},
pages={564-575},
keywords={Least squares methods;Multidimensional systems;Data visualization;Least squares approximation;Data analysis;Computational geometry;Testing;Text processing;Data mining;Demography;Multivariate visualization;Data and knowledge visualization;Information visualization;Multivariate visualization;Data and knowledge visualization;Information visualization},
doi={10.1109/TVCG.2007.70443}}
```
A small working example can be found in [tests/iris_example.py](tests/iris_example.py) and [tests/digits_example.py](tests/digits_example.py).
## Installation
The library currently only supports Python 3.11.
### Dependencies
The library depends on the following packages:
- numpy
- scikit-learn
- matplotlib
### Pip
The library can be installed using pip:
```bash
pip install lsp-python
```