Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/renerocksai/renerocksai.rki
FAISS search over RKI protocols
https://github.com/renerocksai/renerocksai.rki
Last synced: about 2 months ago
JSON representation
FAISS search over RKI protocols
- Host: GitHub
- URL: https://github.com/renerocksai/renerocksai.rki
- Owner: renerocksai
- License: mit
- Created: 2024-07-30T23:59:42.000Z (6 months ago)
- Default Branch: master
- Last Pushed: 2024-08-18T17:27:58.000Z (5 months ago)
- Last Synced: 2024-08-19T11:26:40.251Z (5 months ago)
- Language: Python
- Size: 12 MB
- Stars: 4
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# renerocks.rki
## [FAISS](https://github.com/facebookresearch/faiss)-Powered Semantic Search over RKI Protocol Leak
This is an ad-hoc research project to test the feasibility of the approach of
using FAISS for semantic search in German texts.![](./demo/rki_demo_3.png)
![](./demo/rkiwebdemo.png)### Key points:
- [OpenAI
Embeddings](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) (model=text-embedding-3-large)
- [FAISS](https://github.com/facebookresearch/faiss) Index Search (Cosine Distance Similarity Search)This tool requires:
- an API key from OpenAI
- the following tools to convert everything into plain-text:
- pandoc
- poppler-utils (apt) / poppler (brew)
- unrtf
- libemail-outlook-message-perl (apt) / cpanm Email::Outlook::Message (cpanm
for macos)
- python3 and a few packages## Why an OpenAI API Key?
- Initially, all texts need to be converted into embeddings (approx. 30-40 min
for the entire Zusatzmaterial-2020-2023.zip)
- Each search query needs to be converted into embeddings
- however, the embeddings are cached
- each repeated search query with the exact same wording does not require
further conversion.
- Cost for Sitzungsprotokolle embeddings: $0.13 / 1M tokens
- we have 51,672 paragraphs
- 2.016 million tokens in total
- that makes approx. 0.26 USD
- Cost for Zusatzmaterial embeddings: $0.13 / 1M tokens
- we have 419,946 paragraphs
- 12,944,836 tokens = 13 million tokens in total
- that makes approx. 1.70 USD## Quickstart
```shell
# ONE-TIME: download leak into ./data , e.g.: Zusatzmaterial-2020-2023.zip
$ mkdir data
$ # do the download from a leak-mirror near you...
$ cd data
$ unzip Zusatzmaterial-2020-2023.zip
$ cd ..# ONE-TIME: Optionally: Create a Python environment
$ python3 -m venv env
$ source env/bin/activate# ONE-TIME: Install Python packages
$ pip install -f requirements.txt# ONE-TIME: Create Dataset
# 1. convert everything into plain-text
$ python src/convert.py ./data/Sitzungsprotokolle_orig_docx
# 2. split & convert to the new, improved dataset format
$ python src/convert2.py ./data/Sitzungsprotokolle_orig_docx# Obtain an API key from OpenAI.
$ export OPENAI_RKI_KEY=xxxxx-xxxxx-xxxxx-xxx# Create embeddings for dataset
$ python src/preprocess.py ./data/Sitzungsprotokolle_orig_docx sitzungsprotokolle# Start a search query on new dataset, show 30 results
$ python main.py sitzungsprotokolle 30
```## On Pre-Processing
During pre-processing, the embeddings are fetched from OpenAI. This takes about
30 to 40 minutes for the 10GB Zusatzmaterial dataset.After that, a [FAISS](https://github.com/facebookresearch/faiss) index for the
search needs to be created from all embeddings. This also takes some time,
depending on the CPU. Savvy programmers with an NVIDIA GPU can adjust the code
to use the GPU variant of FAISS. It should be much faster.Once the index is calculated, it is saved and ready to be queried in main.py
## The Web Interface
**AFTER** [Pre-Processing](#quickstart) the datasets, you can host a web
interface that can be built and rum with the provided `docker-compose.yml`.Run the script `setup.sh` in the frontend directory to create self-signed SSL
certificates:```shell
$ cd frontend
$ ./setup.sh
```After that, you can build and run the web interface:
```shell
# Obtain an API key from OpenAI.
$ export OPENAI_RKI_KEY=xxxxx-xxxxx-xxxxx-xxx
$ docker-compose up --build
```### Caveats
- SSL certificates need to be in ./frontend/certs (see above)
- You need to make sure
- that you preprocessed the datasets in the `./datasets-release` directory
- and that they're named `Sitzungsprotokolle_RST` and `Zusatzmaterial_RST`
- Only then do you not need to patch the provided Dockerfile
- Also, the logic in the frontend relies on 'data/...' being part of the
document paths for cross-linking to rkileaks.com to work