Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/reubenmathew/eecs4413-backend
Course Project for EECS4413
https://github.com/reubenmathew/eecs4413-backend
Last synced: 11 days ago
JSON representation
Course Project for EECS4413
- Host: GitHub
- URL: https://github.com/reubenmathew/eecs4413-backend
- Owner: ReubenMathew
- Created: 2022-01-11T00:32:01.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-04-18T20:38:59.000Z (over 2 years ago)
- Last Synced: 2024-11-06T07:42:00.669Z (2 months ago)
- Language: Java
- Homepage:
- Size: 277 KB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# EECS4413-Backend
Course Project for EECS4413## Run Locally
1. Navigate to the Java project `shopcart-backend`
2. Build the docker image `docker build -t .`
3. Create a `.env` file with the following values to connect the backend service to the database
```env
PSCALE_DB_NAME=
PSCALE_USERNAME=
PSCALE_DB_URL=
PSCALE_PASSWORD=
```
4. Run the previously built docker image `docker run -p 8080:8080 --env-file .env shopcart-backend`
5. The backend is successfully deployed## API Endpoints
### Analytics
All analytics endpoints are prefixed with `/api/analytics`- `GET /monthly/items`
- returns JSON object mapping months to items sold
- `GET /website/usage`
- returns JSON object containing page view Analytics
- `POST /website/usage`
- accepts JSON object about where the page visit happened
- `DELETE /website/usage`
- deletes website visit event### Orders
All ordering endpoints are prefixed with `/api/orders`- `GET`
- returns all orders regardless of status in a JSON payload
- `GET /{order_id}`
- returns order as JSON object
- `DELETE /{order_id}`
- deletes order object from database from a request parameter order-id
- `POST /process`
- accepts JSON payload of an order and adds that order to database
- `PUT /submit`
- accepts JSON payload of an order and changes its status based on payment status to `/DummyPaymentService`### Products
All products endpoints are prefixed with `/api/products`- `GET`
- returns JSON list of all product objects in database
- `GET /{product_id}`
- returns product object details from a given product-id
- `POST`
- accepts JSON object of a product and adds it to database
- `PUT /{product_id}`
- accepts JSON object to update existing product objects
- `DELETE /{product_id}`
- deletes product object from database by product-id### Reviews
All reviews endpoints are prefixed with `/api/reviews`- `GET /product/{product_id}`
- gets reviews for a given product-id
- `GET /{review_id}`
- gets review object for a given review-id
- `POST`
- accepts a review JSON object and persists it to the database
- `PUT /{review_id}`
- updates review based on a given review-id
- `DELETE /{review_id}`
- deletes the review object based on a given review-id### Users
All authentication and user controller endpoints are prefixed with `/api`- `POST /authenticate`
- accepts an AuthRequest object containing username and password, returns a JWT token on successful authentication
- `GET /users`
- returns a JSON list of all user objects in database
- `POST /register`
- accepts a `RegistrationRequest` object which persists the to-be registered user in the database## Populate Database with Dummy Data
```sql
-- Drop Tables To Start Fresh
DROP TABLE order_product_ids;
DROP TABLE product_review_ids;
DROP TABLE orders;
DROP TABLE products;
DROP TABLE reviews;
DROP TABLE users;
DROP TABLE visit_event;-- Recreate All Of The Tables Needed
CREATE TABLE `products` (
`id` bigint NOT NULL AUTO_INCREMENT,
`brand` varchar(255) DEFAULT NULL,
`category` varchar(255) DEFAULT NULL,
`color` varchar(255) DEFAULT NULL,
`description` varchar(255) DEFAULT NULL,
`image_url` varchar(255) DEFAULT NULL,
`price` float DEFAULT NULL,
`product_name` varchar(255) DEFAULT NULL,
`size` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;CREATE TABLE `reviews` (
`id` bigint NOT NULL AUTO_INCREMENT,
`description` varchar(255) DEFAULT NULL,
`product_id` bigint DEFAULT NULL,
`rating` int DEFAULT NULL,
`title` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;CREATE TABLE `orders` (
`id` bigint NOT NULL AUTO_INCREMENT,
`country` varchar(255) DEFAULT NULL,
`date` date NOT NULL,
`first_name` varchar(255) DEFAULT NULL,
`last_name` varchar(255) DEFAULT NULL,
`status` varchar(255) DEFAULT NULL,
`total` float DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;CREATE TABLE `product_review_ids` (
`product_id` bigint NOT NULL,
`review_ids` bigint NOT NULL,
PRIMARY KEY (`product_id`,`review_ids`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;CREATE TABLE `order_product_ids` (
`order_id` bigint NOT NULL,
`product_ids` bigint NOT NULL,
PRIMARY KEY (`order_id`,`product_ids`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;CREATE TABLE `users` (
`id` int NOT NULL AUTO_INCREMENT,
`email` varchar(255) NOT NULL,
`password` varchar(255) NOT NULL,
`role_code` varchar(255) NOT NULL,
`username` varchar(255) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;CREATE TABLE `visit_event` (
`id` bigint NOT NULL AUTO_INCREMENT,
`date` date NOT NULL,
`event` varchar(255) DEFAULT NULL,
`ip_address` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;INSERT INTO products (brand, category, color, description, image_url, price, product_name, size) VALUES ("nike", "top", "blue", "Ultra thin shirt", "", 56.99, "Nike Shirt", "XXS");
INSERT INTO products (brand, category, color, description, image_url, price, product_name, size) VALUES ("nike", "top", "black", "Ultra thin oversized shirt", "", 56.99, "Nike Oversized Shirt", "XS");
INSERT INTO products (brand, category, color, description, image_url, price, product_name, size) VALUES ("nike", "top", "green", "Ultra thin tank top", "", 56.99, "Nike TankTop", "S");
INSERT INTO products (brand, category, color, description, image_url, price, product_name, size) VALUES ("nike", "bottom", "grey", "Thick pants", "", 79.99, "Nike Pants", "XXS");
INSERT INTO products (brand, category, color, description, image_url, price, product_name, size) VALUES ("nike", "bottom", "black", "Thick tech pants", "", 79.99, "Nike Tech Pants", "XS");
INSERT INTO products (brand, category, color, description, image_url, price, product_name, size) VALUES ("nike", "bottom", "white", "Thick cargo pants", "", 79.99, "Nike Cargo Pants", "S");
INSERT INTO products (brand, category, color, description, image_url, price, product_name, size) VALUES ("adidas", "accessories", "white", "Elastic", "", 19.99, "Adidas Headband", "XS");INSERT INTO reviews (description, product_id, rating, title) VALUES ("kinda liked it", 1, 3, "Okay product");
INSERT INTO reviews (description, product_id, rating, title) VALUES ("liked it", 1, 4, "Good product");
INSERT INTO reviews (description, product_id, rating, title) VALUES ("didnt like it", 3, 1, "Bad product");
INSERT INTO reviews (description, product_id, rating, title) VALUES ("really liked it", 4, 5, "Amazing product");INSERT INTO product_review_ids (product_id, review_ids) VALUES (1, 1);
INSERT INTO product_review_ids (product_id, review_ids) VALUES (1, 2);
INSERT INTO product_review_ids (product_id, review_ids) VALUES (3, 3);
INSERT INTO product_review_ids (product_id, review_ids) VALUES (4, 4);INSERT INTO orders (country, date, first_name, last_name, status, total) VALUES ("canada", "2022-04-07", "eric", "kwok", 2, 56.99);
INSERT INTO orders (country, date, first_name, last_name, status, total) VALUES ("canada", "2022-06-07", "eric", "kwok", 2, 136.98);
INSERT INTO orders (country, date, first_name, last_name, status, total) VALUES ("canada", "2022-12-07", "eric", "kwok", 2, 136.98);
INSERT INTO orders (country, date, first_name, last_name, status, total) VALUES ("canada", "2022-01-07", "eric", "kwok", 2, 136.98);INSERT INTO order_product_ids (order_id, product_ids) VALUES (1, 1);
INSERT INTO order_product_ids (order_id, product_ids) VALUES (2, 2);
INSERT INTO order_product_ids (order_id, product_ids) VALUES (2, 5);
INSERT INTO order_product_ids (order_id, product_ids) VALUES (3, 2);
INSERT INTO order_product_ids (order_id, product_ids) VALUES (3, 4);
INSERT INTO order_product_ids (order_id, product_ids) VALUES (4, 3);
INSERT INTO order_product_ids (order_id, product_ids) VALUES (4, 6);INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 3);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 3);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 3);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 2);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 2);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 2);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 2);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 1);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 1);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 1);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 1);
INSERT INTO visit_event (date, event, ip_address) VALUES ("2022-04-07", "1.27.0.0.0", 1);
```