Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rexsimiloluwah/streamlit-llm-apps
LLM Applications built using Streamlit, LangChain, and OpenAI API
https://github.com/rexsimiloluwah/streamlit-llm-apps
langchain llm openai streamlit
Last synced: about 2 months ago
JSON representation
LLM Applications built using Streamlit, LangChain, and OpenAI API
- Host: GitHub
- URL: https://github.com/rexsimiloluwah/streamlit-llm-apps
- Owner: rexsimiloluwah
- Created: 2023-08-16T14:01:37.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2023-10-07T21:59:12.000Z (over 1 year ago)
- Last Synced: 2024-07-30T20:45:00.841Z (6 months ago)
- Topics: langchain, llm, openai, streamlit
- Language: Python
- Homepage: https://llm-apps-x.streamlit.app/
- Size: 1.25 MB
- Stars: 9
- Watchers: 1
- Forks: 6
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# LLM Apps using Streamlit and LangChain
## Introduction
This repository showcases a suite of experimental LLM applications built using Streamlit.
## Uses
- Streamlit (UI)
- LangChain
- OpenAI API (`gpt-3.5-turbo`)## Run the App
### Clone the Repository
```bash
$ git clone github.com/rexsimiloluwah/streamlit-llm-apps
$ cd streamlit-llm-apps
```### Install the dependencies
You can advisably create a virtual environment
```bash
$ pip install -r requirements.txt
```## Run the app
```bash
$ streamlit run src/main.py# Using make
$ make run-app
```## Example Applications
### 1. Simple Document QA App
This application enables you to perform question-answering over your PDF document. It uses the `RetrievalQA` chain and the in-memory `DocArray` vector store provided by LangChain.
### 2. Web Page QA App
This application enables you to perform question-answering over content loaded from a web page. It similarly uses the `RetrievalQA` chain and the in-memory `DocArray` vector store provided by LangChain.
### 3. Document Chat App
This application enables you to chat over your PDF document. It uses the `ConversationalRetrievalChain` chain and the in-memory `DocArray` vector store provided by LangChain. The memory is managed externally.