An open API service indexing awesome lists of open source software.

https://github.com/ricardo-larosa/colbert-rag

Index GitHub repositories to ColBERT models and serve them with GRPC or FastAPI
https://github.com/ricardo-larosa/colbert-rag

artificial-intelligence colbert fastapi git grpc langchain llms machine-learning rag

Last synced: 3 months ago
JSON representation

Index GitHub repositories to ColBERT models and serve them with GRPC or FastAPI

Awesome Lists containing this project

README

        

# ColBERT RAG
Index GitHub repositories to ColBERT models and serve them with GRPC or FastAPI.

## Features

- ColBERT-based retrieval for contextually influenced token-level embeddings
- Support for indexing Git repositories with language specific chunking
- GRPC and FastAPI server implementations
- Flexible document processing and indexing

## License

This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.

The Apache License 2.0 is a permissive license that also provides an express grant of patent rights from contributors to users. Key points:

- It allows you to freely use, modify, distribute, and sell your software.
- If you modify the code, you may distribute your modified version, but you must include a notice stating that you changed the files.
- Any modifications or larger works may be distributed under different terms and without source code, but they must include a copy of the Apache 2.0 license.
- You must retain all copyright, patent, trademark, and attribution notices from the original code.

## Setup

1. Install dependencies using Poetry:

```sh
poetry install
```

2. Generate protobuf files:

```sh
poetry run generate-protos
```

## Usage

### Using Scripts

The project includes several utility scripts in the `/scripts` directory:

1. Generate Protobuf Files:
```sh
poetry run generate-protos
```
This script generates the necessary Python files from the protobuf definition.

2. Create Index:
```sh
poetry run create-index --name --repo_name username/repo-name --chunk_size 512
```
This script creates an index from a specified Git repository.

3. Run Server:
```sh
poetry run server --type grpc|fastapi --index
```

4. Run Type Checking:
```sh
poetry run type-check
```
This script runs MyPy for type checking across the project.

### Indexing a Git Repository

```python
from colbert_rag.indexer.git_repo import index_git_repo

index_path = index_git_repo(
model_name="colbert-ir/colbertv2.0",
index_name="my-repo-index",
repo_name="username/repo-name",
max_document_length=512)
```

### Running the Server

#### GRPC Server

```python
from ragatouille import RAGPretrainedModel
from colbert_rag import GRPCServer
from colbert_rag.config import COLBERTRAG_GRPC_PORT, COLBERTRAG_HOST

model = RAGPretrainedModel.from_index("path/to/your/index")
server = GRPCServer(model)
server.serve(COLBERTRAG_HOST, COLBERTRAG_GRPC_PORT)
```

#### FastAPI Server

```python
from ragatouille import RAGPretrainedModel
from colbert_rag import FastAPIServer
from colbert_rag.config import COLBERTRAG_FASTAPI_PORT, COLBERTRAG_HOST

model = RAGPretrainedModel.from_index("path/to/your/index")
server = FastAPIServer(model)
server.serve(COLBERTRAG_HOST, COLBERTRAG_FASTAPI_PORT)
```

### Client Examples

#### GRPC Client

```python
import grpc
from colbert_rag.proto import colbertrag_pb2, colbertrag_pb2_grpc

def run():
with grpc.insecure_channel('localhost:50051') as channel:
stub = colbertrag_pb2_grpc.ColbertRAGStub(channel)
response = stub.Retrieve(colbertrag_pb2.Request(query="Your query here", k=2))
print("ColbertRAG client received:")
for doc in response.documents:
print(f"Page content: {doc.page_content}")
print(f"Metadata: {doc.metadata}")
print("---")

if __name__ == '__main__':
run()
```

#### FastAPI Client

Using Python with the `requests` library:

```python
import requests
import json

url = "http://localhost:8000/retrieve"
payload = {
"query": "Your query here",
"k": 2
}
headers = {
"Content-Type": "application/json"
}

response = requests.post(url, data=json.dumps(payload), headers=headers)

if response.status_code == 200:
data = response.json()
print("ColbertRAG client received:")
for doc in data["documents"]:
print(f"Page content: {doc['page_content']}")
print(f"Metadata: {doc['metadata']}")
print("---")
else:
print(f"Error: {response.status_code}")
print(response.text)
```

Using curl:

```sh
curl -X POST "http://localhost:8000/retrieve" \
-H "Content-Type: application/json" \
-d '{"query": "Your query here", "k": 2}'
```

## Development

### Type Checking

Run MyPy for type checking:

```sh
poetry run type-check
```

### Running Tests

```sh
poetry run pytest
```