Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rickiepark/ml-ko
머신러닝, 딥러닝 한글 번역 저장소
https://github.com/rickiepark/ml-ko
deep-learning keras machine-learning python scikit-learn tensorflow
Last synced: 11 days ago
JSON representation
머신러닝, 딥러닝 한글 번역 저장소
- Host: GitHub
- URL: https://github.com/rickiepark/ml-ko
- Owner: rickiepark
- License: mit
- Created: 2020-10-09T04:04:01.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2023-02-09T08:47:46.000Z (almost 2 years ago)
- Last Synced: 2023-09-10T23:01:02.491Z (over 1 year ago)
- Topics: deep-learning, keras, machine-learning, python, scikit-learn, tensorflow
- Language: HTML
- Homepage: http://ml-ko.kr
- Size: 59.3 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ml-ko.kr: 머신러닝 & 딥러닝 한글 번역 모음
===================* [개발자를 위한 머신러닝&딥러닝](aiml4corders)
* [구글 코랩(Colab) 사용법 (\[혼자 공부하는 머신러닝+딥러닝\]의 1장 2절)](https://preview2.hanbit.co.kr/books/swtr/#p=35)
* [<구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js> 예제의 라이브 데모!](tfjs)
* 핸즈온 머신러닝 2:
* [넘파이 튜토리얼](homl2/tools_numpy.html)
* [맷플롯립 튜토리얼](homl2/tools_matplotlib.html)
* [판다스 튜토리얼](homl2/tools_pandas.html)
* [머신러닝 프로젝트 체크리스트](https://github.com/rickiepark/handson-ml2/blob/master/ml-project-checklist.md)
* [자동 미분](https://github.com/rickiepark/handson-ml2/blob/master/extra_autodiff.ipynb)
* [회오리바람을 탄 파이썬](whirlwindtourpython/목차.html)(Whirlwind Tour of Python)
* [파이썬 라이브러리를 활용한 머신러닝 1장, 2장](https://tensorflow.blog/%ed%8c%8c%ec%9d%b4%ec%8d%ac-%eb%a8%b8%ec%8b%a0%eb%9f%ac%eb%8b%9d/)
* 케라스 창시자에게 배우는 딥러닝
* [신경망과의 첫 만남](dl-with-python/2.1-a-first-look-at-a-neural-network.html)
* [영화 리뷰 분류: 이진 분류 예제](dl-with-python/3.4-classifying-movie-reviews.html)
* [뉴스 기사 분류: 다중 분류 문제](dl-with-python/3.5-classifying-newswires.html)
* [주택 가격 예측: 회귀 문제](dl-with-python/3.6-predicting-house-prices.html)
* [과대적합과 과소적합](dl-with-python/4.4-overfitting-and-underfitting.html)
* [합성곱 신경망 소개](dl-with-python/5.1-introduction-to-convnets.html)
* [소규모 데이터셋에서 컨브넷 사용하기](dl-with-python/5.2-using-convnets-with-small-datasets.html)
* [사전 훈련된 컨브넷 사용하기](dl-with-python/5.3-using-a-pretrained-convnet.html)
* [컨브넷의 학습 시각화하기](dl-with-python/5.4-visualizing-what-convnets-learn.html)
* [단어와 문자의 원-핫 인코딩](dl-with-python/6.1-one-hot-encoding-of-words-or-characters.html)
* [단어 임베딩 사용하기](dl-with-python/6.1-using-word-embeddings.html)
* [순환 신경망 이해하기](dl-with-python/6.2-understanding-recurrent-neural-networks.html)
* [순환 신경망의 고급 사용법](dl-with-python/6.3-advanced-usage-of-recurrent-neural-networks.html)
* [컨브넷을 사용한 시퀀스 처리](dl-with-python/6.4-sequence-processing-with-convnets.html)
* [LSTM으로 텍스트 생성하기](dl-with-python/8.1-text-generation-with-lstm.html)
* [딥드림](dl-with-python/8.2-deep-dream.html)
* [뉴럴 스타일 트랜스퍼](dl-with-python/8.3-neural-style-transfer.html)
* [이미지 생성](dl-with-python/8.4-generating-images-with-vaes.html)
* [적대적 생성 신경망 소개](dl-with-python/8.5-introduction-to-gans.html)