https://github.com/ridwansharkar/the-nutrimancers-codex
AI-assisted Bioessence Extractor - Vol. II
https://github.com/ridwansharkar/the-nutrimancers-codex
cosine-similiarity gemini-api golang gsap llm machine-learning nlp nutritionix-api
Last synced: 4 months ago
JSON representation
AI-assisted Bioessence Extractor - Vol. II
- Host: GitHub
- URL: https://github.com/ridwansharkar/the-nutrimancers-codex
- Owner: RidwanSharkar
- Created: 2024-10-05T20:29:22.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-12-29T06:01:14.000Z (6 months ago)
- Last Synced: 2025-01-16T08:16:50.423Z (5 months ago)
- Topics: cosine-similiarity, gemini-api, golang, gsap, llm, machine-learning, nlp, nutritionix-api
- Language: Go
- Homepage:
- Size: 145 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# The Nutrimancer's Codex - Vol. II
An AI-powered application that analyzes food descriptions to extract ingredients, compute nutrient deficiencies, and recommend foods to balance your diet.## Overview:
The Nutrimancer's Codex is a full-stack application that leverages AI and machine learning to help users understand their nutrient intake and make informed dietary choices. By inputting a food description, users receive an analysis of nutrient content, identify deficiencies, and get personalized food recommendations.---
## Features:
• Ingredient Extraction: utilizes the Gemini Language Model to parse natural language food descriptions.
• Nutrient Analysis: calculates nutrient percentages based on recommended daily allowances using data from Nutritionix and USDA.
• Deficiency Detection: identifies low or missing essential nutrients in the user's diet.
• Recommendation: cosine similarity algorithm is applied across dataset to display the foods most capable of alleviating the current active deficiencies.---
## Vol. II:
---
## Vol. I:
---
## Tech Stack:
• **Frontend:** React (TypeScript), GSAP, Tailwind (CSS), Axios
• **Backend:** Go (GoLang), net/http, CORS, JSON processing
• **Dataset & APIs:** USDA FoodData Central, Google Generative Language, Nutritionix
• **Natural Language Processing:** Gemini Flash 1.5
• **Machine Learning:** Cosine Similarity (GoLang)
• **Deployment:** AWS Amplify, AWS Elastic Beanstack via EC2, Nginx