An open API service indexing awesome lists of open source software.

https://github.com/rikeda71/torchcrf

An Inplementation of CRF (Conditional Random Fields) in PyTorch 1.0
https://github.com/rikeda71/torchcrf

conditional-random-fields crf named-entity-recognition ner pytorch

Last synced: 5 months ago
JSON representation

An Inplementation of CRF (Conditional Random Fields) in PyTorch 1.0

Awesome Lists containing this project

README

        

# Torch CRF

[![CircleCI](https://circleci.com/gh/s14t284/TorchCRF.svg?style=svg)](https://circleci.com/gh/s14t284/TorchCRF)
[![Coverage Status](https://coveralls.io/repos/github/s14t284/TorchCRF/badge.svg)](https://coveralls.io/github/s14t284/TorchCRF)
[![MIT License](https://img.shields.io/github/license/s14t284/TorchCRF)](LICENSE)

[![Python Versions](https://img.shields.io/pypi/pyversions/TorchCRF.svg)](https://pypi.org/project/TorchCRF/)
[![PyPI version](https://badge.fury.io/py/TorchCRF.svg)](https://badge.fury.io/py/TorchCRF)

PyTorch 1.0 による条件付き確率場 (CRF) の実装

## Requirements

- python3 (>=3.6)
- PyTorch 1.0

## Installation

$ pip install TorchCRF

## Usage

```python
>>> import torch
>>> from TorchCRF import CRF
>>> batch_size = 2
>>> sequence_size = 3
>>> num_labels = 5
>>> mask = torch.FloatTensor([[1, 1, 1], [1, 1, 0]]) # (batch_size. sequence_size)
>>> labels = torch.LongTensor([[0, 2, 3], [1, 4, 1]]) # (batch_size, sequence_size)
>>> hidden = torch.randn((batch_size, sequence_size, num_labels), requires_grad=True)
>>> crf = CRF(num_labels)
```

### 推論

```python
>>> crf.forward(hidden, labels, mask)
tensor([-7.6204, -3.6124], grad_fn=)
```

### 系列ラベルの予測

```python
>>> crf.viterbi_decode(hidden, mask)
[[0, 2, 2], [4, 0]]
```

## License

MIT

## References

- [threelittlemonkeys/lstm-crf-pytorch](https://github.com/threelittlemonkeys/lstm-crf-pytorch)
- [kmkurn/pytorch-crf](https://github.com/kmkurn/pytorch-crf)