Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/riscy/sammon_mapping_gsl
A data-mining/dimensionality reduction technique known as Sammon Mapping, implemented in C with the GNU Scientific Library.
https://github.com/riscy/sammon_mapping_gsl
dimensionality-reduction machine-learning
Last synced: 16 days ago
JSON representation
A data-mining/dimensionality reduction technique known as Sammon Mapping, implemented in C with the GNU Scientific Library.
- Host: GitHub
- URL: https://github.com/riscy/sammon_mapping_gsl
- Owner: riscy
- Created: 2016-10-31T04:29:41.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2016-12-29T07:54:35.000Z (about 8 years ago)
- Last Synced: 2024-10-31T08:11:58.061Z (2 months ago)
- Topics: dimensionality-reduction, machine-learning
- Language: C
- Homepage:
- Size: 70.3 KB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.org
Awesome Lists containing this project
README
#+TITLE: Sammon Mapping
[[file:img/spiral_embedding.png]]
* Table of Contents :TOC_4_gh:noexport:
- [[#description][Description]]
- [[#compile][Compile]]
- [[#usage][Usage]]
- [[#input-format][Input format]]
- [[#examples][Examples]]* Description
The Sammon Mapping is a popular data exploration technique for mapping points
in high-dimensional space to points in a low-dimensional space in such a way
that preserves the pairwise distances. Low-dimensional data is easier to
visualize, and the simpler representation can sometimes reveal new patterns.You'll find this algorithm in many visualization toolkits, but this
implementation is written to be among the fastest. It is based on the
following sources:1. "A Nonlinear Mapping for Data Structure Analysis". John
W. Sammon. In IEEE Transactions on Computers 18 (1969).
2. Gavin Cowley and Nicola Talbot's MATLAB implementation of the
Sammon Map (2007).
3. "Line Search Methods for Unconstrained Optimisation". Raphael
Howser. Lecture notes, Oxford University (2007).* Compile
This implementation is written using the GNU Scientific Library and so
requires both the BLAS and GSL libraries. If you're using macOS, for example,
you can use ~brew~ to install these:#+BEGIN_SRC sh
brew install liblas
brew install gsl
#+END_SRCThen compile in one of the following ways:
#+BEGIN_SRC sh
gcc -o smds -lgsl -lblas -lm smds.c
gcc -o smds -lgsl -lblas -lm -D USE_NEWTON smds.c
gcc -o smds -lgsl -lblas -lm -D USE_SMART_LINE smds.c
gcc -o smds -lgsl -lblas -lm -D USE_NEWTON -D USE_SMART_LINE smds.c
#+END_SRCThe preprocessor options work as follows:
- ~-D USE_NEWTON~ yields a binary that uses Newton's method to compute the
search direction per Sammon's original paper. Otherwise, the binary performs
simple gradient descent, but benefits from a smaller memory footprint.
- ~-D USE_SMART_LINE~ yields a binary that uses a "smart" backtracking
Armijo/Goldstein line search. Otherwise, the binary uses a "step-halving"
heuristic due to Cowley and Talbot. Both are improvements over the static
"magic factor" Sammon uses.* Usage
Run the binary with:
#+BEGIN_SRC sh
./smds input_file.dat
#+END_SRC*** Input format
~input_file.dat~ has the following format.
1. First specify the number ~n~ of points being manipulated:~num_points n~
2. Then specify the target dimensionality ~d~ (usually 2 or 3):
~target_dim d~
3. Next, specify the type of input data you plan to supply. It will be
either an ~n~ by ~D~ matrix of points in ~D~-dimensional space:~type_of_data points D~
Or it will be an ~n~ by ~n~ matrix of pairwise distances:
~type_of_data distances~
4. Finally, insert the corresponding input matrix with newline-separated
rows and space-separated columns.
*** Examples
An input file to map 3D points onto the plane:#+BEGIN_SRC
num_points 8
target_dim 2
type_of_data points 3
-12.975580 10.774459 4.972337
-12.090570 11.279190 5.386839
-11.253977 11.769131 5.839330
-10.408915 12.257676 6.342879
-15.182776 10.873951 6.858937
-14.568763 11.190006 7.364072
-15.778972 11.877528 7.884144
-15.102866 12.234200 8.397689
#+END_SRCAn input file to map distance data to points on the plane:
#+BEGIN_SRC
num_points 15
target_dim 2
type_of_data distances
0 1 3 2 3 5 5 4 3 4 5 5 5 4 5
1 0 2 1 2 4 4 3 2 3 4 4 4 3 4
3 2 0 1 2 4 4 3 2 3 4 4 4 3 4
2 1 1 0 1 3 3 2 1 2 3 3 3 2 3
3 2 2 1 0 4 4 3 2 3 4 4 4 3 4
5 4 4 3 4 0 4 1 2 3 2 4 4 3 4
5 4 4 3 4 4 0 3 2 1 4 2 4 3 4
4 3 3 2 3 1 3 0 1 2 1 3 3 2 3
3 2 2 1 2 2 2 1 0 1 2 2 2 1 2
4 3 3 2 3 3 1 2 1 0 3 1 3 2 3
5 4 4 3 4 2 4 1 2 3 0 4 4 3 4
5 4 4 3 4 4 2 3 2 1 4 0 4 3 4
5 4 4 3 4 4 4 3 2 3 4 4 0 1 2
4 3 3 2 3 3 3 2 1 2 3 3 1 0 1
5 4 4 3 4 4 4 3 2 3 4 4 2 1 0
#+END_SRC