Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ritvik19/vizard
Intuitive, Interactive, Easy and Quick Visualizations for Data Science Projects
https://github.com/ritvik19/vizard
data-analysis data-science data-visualization
Last synced: 3 months ago
JSON representation
Intuitive, Interactive, Easy and Quick Visualizations for Data Science Projects
- Host: GitHub
- URL: https://github.com/ritvik19/vizard
- Owner: Ritvik19
- License: mit
- Created: 2021-02-15T13:58:13.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2022-12-25T06:57:14.000Z (about 2 years ago)
- Last Synced: 2024-10-11T01:54:44.739Z (3 months ago)
- Topics: data-analysis, data-science, data-visualization
- Language: Python
- Homepage: https://ritvik19.github.io/vizard/
- Size: 68.4 KB
- Stars: 8
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# vizard
Intuitive, Interactive, Easy and Quick Visualizations for Data Science Projects
[![Downloads](https://pepy.tech/badge/vizard)](https://pepy.tech/project/vizard)
[![Downloads](https://pepy.tech/badge/vizard/month)](https://pepy.tech/project/vizard)
[![Downloads](https://pepy.tech/badge/vizard/week)](https://pepy.tech/project/vizard)## Installation
pip install vizard
or
pip install git+https://github.com/Ritvik19/vizard.git
## Documentation
### Instantiate Vizard Object
The Vizard or VizardIn object holds the `DataFrame` along with its configurations including the `PROBLEM_TYPE`, `DEPENDENT_VARIABLE`, `CATEGORICAL_INDEPENDENT_VARIABLES`, `CONTINUOUS_INDEPENDENT_VARIABLES`, and `TEXT_VARIABLES`
import vizard
class config:
PROBLEM_TYPE = 'regression' or 'classification' or 'unsupervised'
DEPENDENT_VARIABLE = 'target_variable'
CATEGORICAL_INDEPENDENT_VARIABLES = [categorical_features]
CONTINUOUS_INDEPENDENT_VARIABLES = [continuous features]
TEXT_VARIABLES = [text features]viz = vizard.Vizard(df, config)
# for interactive plots use:
viz = vizard.VizardIn(df, config)### Exploratory Data Analysis
After Instatiating the `Vizard` object, you can try different plots for EDA
- Check Missing Values:
viz.check_missing()
- Count of Missing Values:
viz.count_missing()
- Count of Unique Values:
viz.count_unique()
- Count of Missing Values by Group:
viz.count_missing_by_group(class_variable)
- Count of Unique Values by Group:
viz.count_unique_by_group(class_variable)### Target Column Analysis
Based on the type of problem, perform a univariate analysis of target column
viz.dependent_variable()
### Segmented Univariate Analysis
Based on the type of problem, preform segmented univariate analysis of all feature columns with respect to the target column
- Categorical Variables
viz.categorical_variables()
- Continuous Variables
viz.continuous_variables()
- Text Variables
viz.wordcloud()
viz.wordcloud_by_group()
viz.wordcloud_freq()
### Bivariate Analysis
Based on the type of variables, perform bivariate analysis on all the feature columns
- Pairwise Scatter
viz.pairwise_scatter()
- Pairwise Violin
viz.pairwise_violin()
- Pairwise Cross Tabs
viz.pairwise_crosstabs()
### Trivariate Analysis
Based on the type of variables, perform trivariate analysis on any of the feature columns
- Trivariate Bubble (Continuous vs Continuous vs Continuous)
viz.trivariate_bubble(x, y, s)
- Trivariate Scatter (Continuous vs Continuous vs Categorical)
viz.trivariate_scatter(x, y, c)
- Trivariate Violin (Categorical vs Continuous vs Categorical)
viz.trivariate_violin(x, y, c)
### Correlation Analysis
Based on the type of variables, perform correaltion analysis on all the feature columns
- Correlation Plot
viz.corr_plot()
- Pair Plot
viz.pair_plot()
- Chi Square Plot
viz.chi_sq_plot()
## Save the plots to PDF using Viz2PDF
You can also save the plots to a pdf file in order to generate an EDA report
The `Viz2PDF` object takes in all your `Vizard` plots and creates a pdf report out of them
```
viz = vizard.Vizard(df, config)
viz2pdf = vizard.Viz2PDF('viz_report.pdf')plots = [
viz.check_missing(),
viz.count_missing(),
viz.count_unique(),
viz.dependent_variable(),
viz.categorical_variables(),
viz.continuous_variables(),
viz.pairwise_scatter(),
viz.pairwise_violin(),
viz.pairwise_crosstabs(),
]
viz2pdf(plots)
```## Usage
1. [Classification Case](https://nbviewer.jupyter.org/github/Ritvik19/vizard-doc/blob/main/usage/Classification%20Case.ipynb)
2. [Regression Case](https://nbviewer.jupyter.org/github/Ritvik19/vizard-doc/blob/main/usage/Regression%20Case.ipynb)
3. [Text Classification Case](https://nbviewer.jupyter.org/github/Ritvik19/vizard-doc/blob/main/usage/Text%20Classification%20Case.ipynb)
4. [Unsupervised Case](https://nbviewer.jupyter.org/github/Ritvik19/vizard-doc/blob/main/usage/Unsupervised%20Case.ipynb)
5. [Classification Case (Interactive)](https://nbviewer.jupyter.org/github/Ritvik19/vizard-doc/blob/main/usage/Classification%20Interactive%20Case.ipynb)
6. [Regression Case (Interactive)](https://nbviewer.jupyter.org/github/Ritvik19/vizard-doc/blob/main/usage/Regression%20Interactive%20Case.ipynb)
7. [Unsupervised Case (Interactive)](https://nbviewer.jupyter.org/github/Ritvik19/vizard-doc/blob/main/usage/Unsupervised%20Interactive%20Case.ipynb)