Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rlcode/reinforcement-learning
Minimal and Clean Reinforcement Learning Examples
https://github.com/rlcode/reinforcement-learning
a3c actor-critic deep-learning deep-q-network deep-reinforcement-learning dqn machine-learning policy-gradient reinforcement-learning
Last synced: 6 days ago
JSON representation
Minimal and Clean Reinforcement Learning Examples
- Host: GitHub
- URL: https://github.com/rlcode/reinforcement-learning
- Owner: rlcode
- License: mit
- Created: 2017-01-13T09:30:09.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2023-03-24T21:57:34.000Z (almost 2 years ago)
- Last Synced: 2025-01-10T11:11:06.979Z (13 days ago)
- Topics: a3c, actor-critic, deep-learning, deep-q-network, deep-reinforcement-learning, dqn, machine-learning, policy-gradient, reinforcement-learning
- Language: Python
- Homepage:
- Size: 60.2 MB
- Stars: 3,445
- Watchers: 129
- Forks: 736
- Open Issues: 36
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-machine-learning-resources - **[Code Collection - learning?style=social) (Table of Contents)
README
--------------------------------------------------------------------------------
> Minimal and clean examples of reinforcement learning algorithms presented by [RLCode](https://rlcode.github.io) team. [[한국어]](https://github.com/rlcode/reinforcement-learning-kr)
>
> Maintainers - [Woongwon](https://github.com/dnddnjs), [Youngmoo](https://github.com/zzing0907), [Hyeokreal](https://github.com/Hyeokreal), [Uiryeong](https://github.com/wooridle), [Keon](https://github.com/keon)From the basics to deep reinforcement learning, this repo provides easy-to-read code examples. One file for each algorithm.
Please feel free to create a [Pull Request](https://github.com/rlcode/reinforcement-learning/pulls), or open an [issue](https://github.com/rlcode/reinforcement-learning/issues)!## Dependencies
1. Python 3.5
2. Tensorflow 1.0.0
3. Keras
4. numpy
5. pandas
6. matplot
7. pillow
8. Skimage
9. h5py### Install Requirements
```
pip install -r requirements.txt
```## Table of Contents
**Grid World** - Mastering the basics of reinforcement learning in the simplified world called "Grid World"
- [Policy Iteration](./1-grid-world/1-policy-iteration)
- [Value Iteration](./1-grid-world/2-value-iteration)
- [Monte Carlo](./1-grid-world/3-monte-carlo)
- [SARSA](./1-grid-world/4-sarsa)
- [Q-Learning](./1-grid-world/5-q-learning)
- [Deep SARSA](./1-grid-world/6-deep-sarsa)
- [REINFORCE](./1-grid-world/7-reinforce)**CartPole** - Applying deep reinforcement learning on basic Cartpole game.
- [Deep Q Network](./2-cartpole/1-dqn)
- [Double Deep Q Network](./2-cartpole/2-double-dqn)
- [Policy Gradient](./2-cartpole/3-reinforce)
- [Actor Critic (A2C)](./2-cartpole/4-actor-critic)
- [Asynchronous Advantage Actor Critic (A3C)](./2-cartpole/5-a3c)**Atari** - Mastering Atari games with Deep Reinforcement Learning
- **Breakout** - [DQN](./3-atari/1-breakout/breakout_dqn.py), [DDQN](./3-atari/1-breakout/breakout_ddqn.py) [Dueling DDQN](./3-atari/1-breakout/breakout_ddqn.py) [A3C](./3-atari/1-breakout/breakout_a3c.py)
- **Pong** - [Policy Gradient](./3-atari/2-pong/pong_reinforce.py)**OpenAI GYM** - [WIP]
- Mountain Car - [DQN](./4-gym/1-mountaincar)