Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rlczddl/awesome-3d-human-reconstruction
https://github.com/rlczddl/awesome-3d-human-reconstruction
List: awesome-3d-human-reconstruction
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/rlczddl/awesome-3d-human-reconstruction
- Owner: rlczddl
- Created: 2020-08-23T06:20:03.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-01-17T01:51:01.000Z (12 months ago)
- Last Synced: 2024-05-20T01:01:08.393Z (8 months ago)
- Size: 146 KB
- Stars: 785
- Watchers: 50
- Forks: 85
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# awesome 3d human reconstruction
A curated list of related resources for 3d human reconstruction. Your contributions are welcome!## Contents
- [papers](#3d-human)
- [AIGC](#AIGC)
- [nerf pifu_3dgs](#nerf_pifu_3dgs)
- [geo fusion](#geo_fusion)
- [photo](#photo)
- [3D human whole body](#3D_human_whole_body)
- [3D human body](#3D_human_body)
- [3d human face](#3d_human_face)
- [3d human head](#3d_human_head)
- [3D human hand](#3D_human_hand)
- [3d cloth](#3d_cloth)
- [3d hair](#3d_hair)
- [3d teeth](#3d_teeth)
- [3d eyelids](#3d_eyelids)
- [related papers](#related)
- [human mattting](#human_mattting)
- [pose estimation](#pose_estimation)
- [registration](#registration)
- [correspondence](#correspondence)
- [application](#application)
- [texture](#texture)
- [skin](#skin)
- [talking head](#talking_head)
- [uncategorized](#uncategorized)
- [parametric model](#parametric-model)
- [body](#body)
- [face](#face)
- [head](#head)
- [hand](#hand)
- [method](#method)
- [dataset](#dataset)
- [face](#face)
- [hand](#hand)
- [body](#body)
- [method](#method)
- [others](#others)
- [labs](#labs)
- [other related awesome](#other-related-awesome)
- [survey](#survey)
## 3d human
### AIGC
##### • Rodin: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion [paper](https://arxiv.org/abs/2212.06135)
##### • DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance [paper](https://arxiv.org/abs/2304.03117)
##### • High-fidelity 3D Face Generation from Natural Language Descriptions
##### • Make-A-Character: High Quality Text-to-3D Character Generation within Minutes [code](https://github.com/Human3DAIGC/Make-A-Character)### nerf_pifu_3dgs
##### • StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision [paper](https://arxiv.org/pdf/2104.05289.pdf)
##### • Learning Implicit 3D Representations of Dressed Humans from Sparse Views [paper](https://arxiv.org/pdf/2104.08013v1.pdf)
##### • Animatable Neural Radiance Fields for Human Body Modeling [paper](https://arxiv.org/pdf/2105.02872.pdf)
##### • PaMIR: Parametric Model-Conditioned Implicit Representation for Image-based Human Reconstruction [paper](https://arxiv.org/pdf/2007.03858.pdf) [code](https://github.com/ZhengZerong/PaMIR)
##### • Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control [paper&code](http://gvv.mpi-inf.mpg.de/projects/NeuralActor/)
##### • MoCo-Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary Monocular Cameras [paper](https://arxiv.org/pdf/2106.04477v1.pdf)
##### • DoubleField: Bridging the Neural Surface and Radiance Fields for High-fidelity Human Rendering [paper](https://arxiv.org/pdf/2106.03798.pdf)
##### • Bridge the Gap Between Model-based and Model-free Human Reconstruction [paper](https://arxiv.org/pdf/2106.06415v1.pdf)
##### • MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images [paper](https://arxiv.org/pdf/2106.11944v1.pdf)
##### • Animatable Neural Radiance Fields from Monocular RGB Video [paper](https://arxiv.org/pdf/2106.13629v1.pdf)
##### • Few-shot Neural Human Performance Rendering from Sparse RGBD Videos [paper](https://arxiv.org/pdf/2107.06505v1.pdf)
##### • Relightable Neural Video Portrait [paper](https://arxiv.org/pdf/2107.14735v1.pdf)
##### • FLAME-in-NeRF : Neural control of Radiance Fields for Free View Face Animation [paper](https://arxiv.org/pdf/2108.04913v1.pdf)
##### • ARCH++: Animation-Ready Clothed Human Reconstruction Revisited [paper](https://arxiv.org/pdf/2108.07845.pdf)
##### • Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing [paper](https://virtualhumans.mpi-inf.mpg.de/neuralgif/)
##### • Neural Human Performer: Learning Generalizable Radiance Fields for Human Performance Rendering [paper](https://arxiv.org/pdf/2109.07448v1.pdf) [code](https://youngjoongunc.github.io/nhp/)
##### • Topologically Consistent Multi-View Face Inference Using Volumetric Sampling [paper](https://arxiv.org/pdf/2110.02948.pdf)
##### • Creating and Reenacting Controllable 3D Humans with Differentiable Rendering [paper](https://arxiv.org/pdf/2110.11746v1.pdf)
##### • H-NeRF: Neural Radiance Fields for Rendering and Temporal Reconstruction of Humans in Motion [paper](https://arxiv.org/pdf/2110.13746v1.pdf)
##### • FENeRF: Face Editing in Neural Radiance Fields [paper](https://arxiv.org/pdf/2111.15490v1.pdf)
##### • LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human Bodies [paper&code](https://latenthuman.github.io/)
##### • Neural Head Avatars from Monocular RGB Videos [paper](https://arxiv.org/pdf/2112.01554v1.pdf)
##### • HumanNeRF: Generalizable Neural Human Radiance Field from Sparse Inputs [paper](https://arxiv.org/pdf/2112.02789v1.pdf)
##### • Implicit Neural Deformation for Multi-View Face Reconstruction [paper](https://arxiv.org/pdf/2112.02494v1.pdf)
##### • MoFaNeRF: Morphable Facial Neural Radiance Field [paper](https://arxiv.org/pdf/2112.02308.pdf) [code](https://github.com/zhuhao-nju/mofanerf)
##### • Geometry-Guided Progressive NeRF for Generalizable and Efficient Neural Human Rendering [paper](https://arxiv.org/pdf/2112.04312v1.pdf)
##### • HeadNeRF: A Real-time NeRF-based Parametric Head Model [paper](https://arxiv.org/pdf/2112.05637v1.pdf) [code](https://github.com/CrisHY1995/headnerf)
##### • I M Avatar: Implicit Morphable Head Avatars from Videos [paper](https://arxiv.org/pdf/2112.07471v1.pdf) [code](https://github.com/zhengyuf/IMavatar)
##### • LookinGoodπ: Real-time Person-independent Neural Re-rendering for High-quality Human Performance Capture [paper](https://arxiv.org/pdf/2112.08037v1.pdf)
##### • ICON: Implicit Clothed humans Obtained from Normals [paper](https://arxiv.org/pdf/2112.09127v1.pdf) [code](https://github.com/YuliangXiu/ICON)
##### • DD-NeRF: Double-Diffusion Neural Radiance Field as a Generalizable Implicit Body Representation [paper](https://arxiv.org/pdf/2112.12390v1.pdf)
##### • Human View Synthesis using a Single Sparse RGB-D Input [paper](https://arxiv.org/pdf/2112.13889v1.pdf)
##### • Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis [paper](https://arxiv.org/pdf/2201.01683v1.pdf)
##### • Embodied Hands: Modeling and Capturing Hands and Bodies Together [paper](https://arxiv.org/pdf/2201.02610v1.pdf)
##### • HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video [paper](https://arxiv.org/pdf/2201.04127v1.pdf) [code](https://github.com/chungyiweng/humannerf)
##### • gDNA: Towards Generative Detailed Neural Avatars [paper](https://arxiv.org/pdf/2201.04123v1.pdf) [code](https://github.com/xuchen-ethz/gdna)
##### • SelfRecon: Self Reconstruction Your Digital Avatar from Monocular Video [paper](https://arxiv.org/pdf/2201.12792v1.pdf)
##### • NeuVV: Neural Volumetric Videos with Immersive Rendering and Editing [paper](https://arxiv.org/pdf/2202.06088v1.pdf)
##### • Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies [paper](https://arxiv.org/abs/2105.02872) [code](https://github.com/zju3dv/animatable_nerf)
##### • DeepMultiCap: Performance Capture of Multiple Characters Using Sparse Multiview Cameras [paper](https://arxiv.org/abs/2105.00261) [code](https://github.com/DSaurus/DeepMultiCap)
##### • NeuralFusion: Neural Volumetric Rendering under Human-object Interactions [paper](https://arxiv.org/pdf/2202.12825v1.pdf)
##### • PINA: Learning a Personalized Implicit Neural Avatar from a Single RGB-D Video Sequence [paper](https://arxiv.org/pdf/2203.01754v1.pdf) [code](https://github.com/zj-dong/pina/tree/page)
##### • NeuMan: Neural Human Radiance Field from a Single Video [paper](https://arxiv.org/pdf/2203.12575v1.pdf)
##### • M Avatar: Implicit Morphable Head Avatars from Videos [paper](https://arxiv.org/pdf/2112.07471.pdf) [code](https://github.com/zhengyuf/IMavatar)
##### • ImFace: A Nonlinear 3D Morphable Face Model with Implicit Neural Representations [paper](https://arxiv.org/pdf/2203.14510.pdf)
##### • COAP: Compositional Articulated Occupancy of People [paper](https://arxiv.org/pdf/2204.06184v1.pdf) [code](https://github.com/markomih/COAP)
##### • SunStage: Portrait Reconstruction and Relighting using the Sun as a Light Stage [paper](https://arxiv.org/pdf/2204.03648v1.pdf)
##### • LISA: Learning Implicit Shape and Appearance of Hands [paper](https://arxiv.org/pdf/2204.01695v1.pdf)
##### • Animatable Neural Radiance Fields from Monocular RGB-D [paper](https://arxiv.org/pdf/2204.01218v1.pdf)
##### • JIFF: Jointly-aligned Implicit Face Function for High Quality Single View Clothed Human Reconstruction [paper](https://arxiv.org/pdf/2204.10549v1.pdf)
##### • Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis [paper](https://arxiv.org/pdf/2204.11798v1.pdf)
##### • DANBO: Disentangled Articulated Neural Body Representations via Graph Neural Networks [paper](https://arxiv.org/pdf/2205.01666.pdf)
##### • Single-view 3D Body and Cloth Reconstruction under Complex Poses [paper](https://arxiv.org/pdf/2205.04087v1.pdf)
##### • KeypointNeRF: Generalizing Image-based Volumetric Avatars using Relative Spatial Encoding of Keypoints [paper](https://arxiv.org/pdf/2205.04992.pdf)
##### • H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [paper](https://arxiv.org/pdf/2107.12512.pdf) [code](https://github.com/MaxPolak97/H3D-Net-reproduction)
##### • Photorealistic Monocular 3D Reconstruction of Humans Wearing Clothing [paper](https://arxiv.org/abs/2204.08906)
##### • High-Fidelity Human Avatars from a Single RGB Camera [paper](https://github.com/hzhao1997/HF-Avatar)
##### • UV Volumes for Real-time Rendering of Editable Free-view Human Performance [code](https://github.com/fanegg/UV-Volumes)
##### • FOF: Learning Fourier Occupancy Field for Monocular Real-time Human Reconstruction [paper](https://arxiv.org/pdf/2206.02194v1.pdf)
##### • NeMF: Neural Motion Fields for Kinematic Animation [paper](https://arxiv.org/pdf/2206.03287v1.pdf)
##### • RigNeRF: Fully Controllable Neural 3D Portraits [paper](https://arxiv.org/pdf/2206.06481v1.pdf)
##### • EyeNeRF: A Hybrid Representation for Photorealistic Synthesis, Animation and Relighting of Human Eyes [paper](https://arxiv.org/pdf/2206.08428v1.pdf)
##### • TAVA: Template-free Animatable Volumetric Actors [paper](https://arxiv.org/pdf/2206.08929v1.pdf)
##### • Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D Camera [homepage](https://ustc3dv.github.io/ndr/)
##### • Generative Neural Articulated Radiance Fields [paper](https://arxiv.org/pdf/2206.14314v1.pdf)
##### • Neural Parameterization for Dynamic Human Head Editing [paper](https://arxiv.org/pdf/2207.00210v1.pdf)
##### • AvatarCap: Animatable Avatar Conditioned Monocular Human Volumetric Capture [paper](https://arxiv.org/pdf/2207.02031v1.pdf) [code](https://github.com/lizhe00/AvatarCap)
##### • Learning Implicit Templates for Point-Based Clothed Human Modeling [homepage](https://jsnln.github.io/fite/)
##### •Relighting4D: Neural Relightable Human from Videos [code](https://github.com/FrozenBurning/Relighting4D)
##### •High Quality Human Reconstruction via Diffusion-based Stereo Using Sparse Cameras [paper](https://arxiv.org/pdf/2207.08000v1.pdf)
##### •CrossHuman: Learning Cross-Guidance from Multi-Frame Images for Human Reconstruction [paper](https://arxiv.org/pdf/2207.09735v1.pdf)
##### •UNIF: United Neural Implicit Functions for Clothed Human Reconstruction and Animation [paper](https://arxiv.org/pdf/2207.09835v1.pdf) [code](https://github.com/ShenhanQian/UNIF)
##### •Drivable Volumetric Avatars using Texel-Aligned Features [paper](https://arxiv.org/pdf/2207.09774v1.pdf)
##### •The One Where They Reconstructed 3D Humans and Environments in TV Shows [homepage](https://ethanweber.me/sitcoms3D/)
##### •AvatarGen: a 3D Generative Model for Animatable Human Avatars [paper](https://arxiv.org/pdf/2208.00561.pdf)
##### •VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations [paper](https://www.arxiv-vanity.com/papers/2208.00949/?continueFlag=acd9680585ca1db48ed3cbc277e4da97)
##### •Multi-NeuS: 3D Head Portraits from Single Image with Neural Implicit Functions [paper](https://arxiv.org/pdf/2209.04436.pdf)
##### •Learning to Relight Portrait Images via a Virtual Light Stage and Synthetic-to-Real Adaptation [paper](https://arxiv.org/pdf/2209.10510.pdf)
##### •Occupancy Planes for Single-view RGB-D Human Reconstruction Xiaoming Zhao, Yuan-Ting Hu, Zhongzheng Ren, Alexander G. Schwing [paper](https://arxiv.org/pdf/2208.02817.pdf)
##### •ManVatar : Fast 3D Head Avatar Reconstruction Using Motion-Aware Neural Voxels [paper](https://arxiv.org/pdf/2211.13206.pdf)
##### •NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-view Reconstruction [paper](https://arxiv.org/pdf/2212.05231.pdf)
##### •Structured 3D Features for Reconstructing Relightable and Animatable Avatars [project](https://enriccorona.github.io/s3f/)
##### •PhoMoH: Implicit Photorealistic 3D Models of Human Heads [paper](https://arxiv.org/pdf/2212.07275.pdf)
##### •NerfCap: Human Performance Capture With Dynamic Neural Radiance Fields [paper](http://www.cad.zju.edu.cn/home/gfzhang/papers/NerfCap/NerfCap_TVCG_2022.pdf) [code](https://github.com/wangkangkan/nerfcap)
##### •ECON: Explicit Clothed humans Obtained from Normals [homepage](https://xiuyuliang.cn/econ/)
##### •PointAvatar: Deformable Point-based Head Avatars from Videos [homepage](https://zhengyuf.github.io/pointavatar/)
##### •TotalSelfScan: Learning Full-body Avatars from Self-Portrait Videos of Faces, Hands, and Bodies [project](https://zju3dv.github.io/TotalSelfScan/)
##### •InstantAvatar: Learning Avatars from Monocular Video in 60 Seconds [homepage](https://tijiang13.github.io/InstantAvatar/#)
##### •HumanGen: Generating Human Radiance Fields with Explicit Priors [paper](https://arxiv.org/pdf/2212.05321v1.pdf)
##### • GazeNeRF: 3D-Aware Gaze Redirection with Neural Radiance Fields [paper](https://www.arxivdaily.com/thread/35452)
##### • Pixel2ISDF: Implicit Signed Distance Fields based Human Body Model from Multi-view and Multi-pose Images [paper](https://arxiv.org/pdf/2212.02765v1.pdf)
##### • Learning Neural Parametric Head Models [homepage](https://simongiebenhain.github.io/NPHM/)
##### • RANA: Relightable Articulated Neural Avatars [paper](https://arxiv.org/pdf/2212.03237v1.pdf)
##### • One-shot Implicit Animatable Avatars with Model-based Priors [paper](https://arxiv.org/pdf/2212.02469v1.pdf)
##### • Super-resolution 3D Human Shape from a Single Low-Resolution Image [paper](https://marcopesavento.github.io/SuRS/eccv22_main.pdf) [code](https://github.com/marcopesavento/Super-resolution-3D-Human-Shape-from-a-Single-Low-Resolution-Image)
##### • Vid2Avatar: 3D Avatar Reconstruction from Videos in the Wild via Self-supervised Scene Decomposition [paper](https://ait.ethz.ch/projects/2023/vid2avatar/downloads/main.pdf)
##### • X-Avatar: Expressive Human Avatars [github](https://github.com/Skype-line/X-Avatar)
##### • Learning Neural Volumetric Representations of Dynamic Humans in Minutes [paper&code](https://zju3dv.github.io/instant_nvr/)
##### • NeRSemble: Multi-view Radiance Field Reconstruction of Human Heads [paper](https://arxiv.org/abs/2305.03027)
##### • PICA: Physics-Integrated Clothed Avatar [paper](https://arxiv.org/pdf/2407.05324)### geo_fusion
##### • DoubleFusion: Real-time Capture of Human Performances with Inner Body Shapes from a Single Depth Sensor [paper](https://arxiv.org/abs/1804.06023)
##### • Robust 3D Self-portraits in Seconds [paper](https://arxiv.org/abs/2004.02460)
##### • ACCURATE HUMAN BODY RECONSTRUCTION FOR VOLUMETRIC VIDEO [paper](https://arxiv.org/pdf/2202.13118v1.pdf)
##### • OcclusionFusion: Occlusion-aware Motion Estimation for Real-time Dynamic 3D Reconstruction [paper](https://arxiv.org/pdf/2203.07977v1.pdf) [code](https://github.com/wenbin-lin/OcclusionFusion/)### photo
##### • Portrait Reconstruction and Relighting using the Sun as a Light Stage [homepage](https://grail.cs.washington.edu/projects/sunstage/)
##### • Reconstructing Hand-Held Objects from Monocular Video [paper](https://arxiv.org/pdf/2211.16835v1.pdf)
##### • In-Hand 3D Object Scanning from an RGB Sequence [paper](https://arxiv.org/pdf/2211.16193v1.pdf)### 3D_human_whole_body
##### • Monocular Expressive Body Regression through Body-Driven Attention [paper](https://arxiv.org/abs/2008.09062) [code](https://github.com/vchoutas/expose)
##### • FrankMocap: Fast Monocular 3D Hand and Body Motion Capture by Regression and Integration [paper](https://arxiv.org/pdf/2008.08324.pdf) [code](https://github.com/facebookresearch/frankmocap)
##### • Collaborative Regression of Expressive Bodies using Moderation [paper&code](https://pixie.is.tue.mpg.de/)
##### • Monocular Real-time Full Body Capture with Inter-part Correlations [paper&code](https://calciferzh.github.io/publications/zhou2021monocular)
##### • Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data [paper&code](https://calciferzh.github.io/publications/zhou2020monocular)
##### • Real-time RGBD-based Extended Body Pose Estimation [paper](https://arxiv.org/pdf/2103.03663.pdf) [code](https://github.com/rmbashirov/rgbd-kinect-pose)
##### • Detailed Avatar Recovery from Single Image [paper](https://arxiv.org/pdf/2108.02931v1.pdf)
##### • Lightweight Multi-person Total Motion Capture Using Sparse Multi-view Cameras [paper](https://arxiv.org/pdf/2108.10378v1.pdf)
##### • Imposing Temporal Consistency on Deep Monocular Body Shape and Pose Estimation [paper](https://arxiv.org/pdf/2202.03074v1.pdf)
##### • PIANO: A Parametric Hand Bone Model from Magnetic Resonance Imaging [github](https://github.com/reyuwei/PIANO_model)
##### • GOAL: Generating 4D Whole-Body Motion for Hand-Object Grasping [paper](https://arxiv.org/pdf/2112.11454.pdf) [code](https://github.com/otaheri/GOAL)
##### • PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images [paper](https://arxiv.org/pdf/2207.06400v1.pdf)
##### • Generating Holistic 3D Human Motion from Speech [project](https://talkshow.is.tue.mpg.de/)
##### • One-Stage 3D Whole-Body Mesh Recovery with Component Aware Transformer [project](https://osx-ubody.github.io/)### 3D_human_body
##### • Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh Recovery from a 2D Human Pose [paper](https://arxiv.org/abs/2008.09047) [code](https://github.com/hongsukchoi/Pose2Mesh_RELEASE)
##### • Monocular Real-Time Volumetric Performance Capture [paper](https://arxiv.org/abs/2007.13988) [code](https://github.com/Project-Splinter/MonoPort)
##### • Full-Body Awareness from Partial Observations [paper](https://arxiv.org/abs/2008.06046) [code](https://github.com/crockwell/partial_humans)
##### • CenterHMR: a Bottom-up Single-shot Method for Multi-person 3D Mesh Recovery from a Single Image [paper](https://arxiv.org/pdf/2008.12272.pdf) [code](https://github.com/Arthur151/CenterHMR)
##### • Reconstructing NBA players [paper](https://arxiv.org/pdf/2007.13303.pdf) [code](https://github.com/luyangzhu/NBA-Players)
##### • Going beyond Free Viewpoint: Creating Animatable Volumetric Video of Human Performances [paper](https://arxiv.org/abs/2009.00922)
##### • Synthetic Training for Accurate 3D Human Pose and Shape Estimation in the Wild [paper](https://arxiv.org/pdf/2009.10013.pdf) [code](https://github.com/akashsengupta1997/STRAPS-3DHumanShapePose)
##### • Implicit 3D Human Mesh Recovery using Consistency with Pose and Shape from Unseen-view [paper](https://arxiv.org/abs/2306.17651)
##### • Diff-HMR: Generative Approach for Probabilistic Human Mesh Recovery using Diffusion Models [paper](https://arxiv.org/abs/2308.02963) [code](https://github.com/hanbyel0105/Diff-HMR)
##### • Video Inference for Human Mesh Recovery with Vision Transformer [paper](https://ieeexplore.ieee.org/document/10042731)
##### • MonoClothCap: Towards Temporally Coherent Clothing Capture from Monocular RGB Video [paper](https://arxiv.org/pdf/2009.10711.pdf)
##### • Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People [paper](https://arxiv.org/abs/2009.14162) [code](https://akincaliskan3d.github.io/MV3DH/)
##### • Synthetic Training for Monocular Human Mesh Recovery [paper](https://arxiv.org/abs/2010.14036)
##### • Pose2Pose: 3D Positional Pose-Guided 3D Rotational Pose Prediction for Expressive 3D Human Pose and Mesh Estimation [paper](https://arxiv.org/pdf/2011.11534.pdf)
##### • Deep Physics-aware Inference of Cloth Deformation for Monocular Human Performance Capture
##### • 4D Human Body Capture from Egocentric Video via 3D Scene Grounding [paper](https://arxiv.org/abs/2011.13341)
##### • HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation [paper](https://arxiv.org/pdf/2011.14672.pdf) [code](https://github.com/Jeff-sjtu/HybrIK)
##### • We are More than Our Joints: Predicting how 3D Bodies Move [paper](https://arxiv.org/pdf/2012.00619.pdf)
##### • SMPLy Benchmarking 3D Human Pose Estimation in the Wild [paper](https://arxiv.org/pdf/2012.02743v1.pdf)
##### • Synthesizing Long-Term 3D Human Motion and Interaction in 3D [paper](https://jiashunwang.github.io/Long-term-Motion-in-3D-Scenes/)
##### • Detailed 3D Human Body Reconstruction from Multi-view Images Combining Voxel Super-Resolution and Learned Implicit Representation
##### • A novel joint points and silhouette-based method to estimate 3D human pose and shape
##### • FaceDet3D: Facial Expressions with 3D Geometric Detail Prediction [paper](https://arxiv.org/pdf/2012.07999.pdf)
##### • NerFACE: Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction [code](https://github.com/gafniguy/4D-Facial-Avatars)
##### • Learning Complex 3D Human Self-Contact [paper](https://arxiv.org/pdf/2012.10366.pdf)
##### • Populating 3D Scenes by Learning Human-Scene Interaction [paper](https://arxiv.org/pdf/2012.11581.pdf)
##### • ANR: Articulated Neural Rendering for Virtual Avatars [paper](https://anr-avatars.github.io/)
##### • Human Mesh Recovery from Multiple Shots [paper](https://geopavlakos.github.io/multishot/)
##### • Lifting 2D StyleGAN for 3D-Aware Face Generation [paper](S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling)
##### • Capturing Detailed Deformations of Moving Human Bodies [paper](https://arxiv.org/pdf/2102.07343.pdf)
##### • 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos [paper](https://arxiv.org/pdf/2103.06498v1.pdf)
##### • ChallenCap: Monocular 3D Capture of Challenging Human Performances using Multi-Modal References [paper](https://arxiv.org/pdf/2103.06747v1.pdf)
##### • SMPLicit: Topology-aware Generative Model for Clothed People [paper&code](http://www.iri.upc.edu/people/ecorona/smplicit/)
##### • Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos [paper](https://arxiv.org/pdf/2103.03319.pdf)
##### • NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering using RGB Cameras [paper](https://arxiv.org/pdf/2103.07700v1.pdf)
##### • Probabilistic 3D Human Shape and Pose Estimation from Multiple Unconstrained Images in the Wild [paper](https://arxiv.org/pdf/2103.10978v1.pdf)
##### • 3DCrowdNet: 2D Human Pose-Guided 3D Crowd Human Pose and Shape Estimation in the Wild [paper](https://arxiv.org/pdf/2104.07300v1.pdf)
##### • SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements [paper](https://arxiv.org/pdf/2104.07660.pdf)
##### • Multi-person Implicit Reconstruction from a Single Image [paper](https://arxiv.org/pdf/2104.09283v1.pdf)
##### • PARE: Part Attention Regressor for 3D Human Body Estimation [paper](https://arxiv.org/pdf/2104.08527v1.pdf) [code](https://pare.is.tue.mpg.de/)
##### • Temporal Consistency Loss for High Resolution Textured and Clothed 3D Human Reconstruction from Monocular Video [paper](https://arxiv.org/pdf/2104.09259.pdf)
##### • Function4D: Real-time Human Volumetric Capture from Very Sparse Consumer RGBD Sensors [paper](http://www.liuyebin.com/Function4D/Function4D.html)
##### • End-to-End Human Pose and Mesh Reconstruction with Transformers [paper](https://github.com/microsoft/MeshTransformer)
##### • Revitalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation [paper](https://arxiv.org/pdf/2105.13965v1.pdf)
##### • SHARP: Shape-Aware Reconstruction of People In Loose Clothing [paper](https://arxiv.org/pdf/2106.04778v1.pdf)
##### • THUNDR: Transformer-based 3D HUmaN Reconstruction with Markers [paper](https://arxiv.org/pdf/2106.09336v1.pdf)
##### • Deep3DPose: Realtime Reconstruction of Arbitrarily Posed Human Bodies from Single RGB Images [paper](https://arxiv.org/pdf/2106.11536v1.pdf)
##### • Learning Local Recurrent Models for Human Mesh Recovery [paper](https://arxiv.org/pdf/2107.12847v1.pdf)
##### • PoseFusion2: Simultaneous Background Reconstruction and Human Shape Recovery in Real-time [paper](https://arxiv.org/pdf/2108.00695v1.pdf)
##### • LASOR: Learning Accurate 3D Human Pose and Shape Via Synthetic Occlusion-Aware Data and Neural Mesh Rendering [paper](https://arxiv.org/pdf/2108.00351v1.pdf)
##### • Learning Motion Priors for 4D Human Body Capture in 3D Scenes [paper](https://arxiv.org/pdf/2108.10399v1.pdf) [code](https://github.com/sanweiliti/LEMO)
##### • Probabilistic Modeling for Human Mesh Recovery [paper&code](https://www.seas.upenn.edu/~nkolot/projects/prohmr/)
##### • DC-GNet: Deep Mesh Relation Capturing Graph Convolution Network for 3D Human Shape Reconstruction [paper](https://arxiv.org/pdf/2108.12384v1.pdf)
##### • Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation [paper](https://arxiv.org/pdf/2109.02303v1.pdf) [code](https://github.com/ziniuwan/maed)
##### • Action-Conditioned 3D Human Motion Synthesis with Transformer VAE [code](https://github.com/Mathux/ACTOR)
##### • Learning to Regress Bodies from Images using Differentiable Semantic Rendering [paper](https://arxiv.org/pdf/2110.03480v1.pdf)
##### • Deep Two-Stream Video Inference for Human Body Pose and Shape Estimation [paper](https://arxiv.org/pdf/2110.11680v1.pdf)
##### • UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model [paper](https://arxiv.org/pdf/2110.15267v1.pdf)
##### • Body Size and Depth Disambiguation in Multi-Person Reconstruction from Single Images [paper](https://arxiv.org/pdf/2111.01884v1.pdf) [code](https://github.com/nicolasugrinovic/size_depth_disambiguation)
##### • Unified 3D Mesh Recovery of Humans and Animals by Learning Animal Exercise [paper](https://arxiv.org/pdf/2111.02450v1.pdf)
##### • 3D Human Shape and Pose from a Single Low-Resolution Image with Self-Supervised Learning [paper](https://arxiv.org/pdf/2007.13666.pdf) [code](https://github.com/xuxy09/RSC-Net)
##### • Out-of-Domain Human Mesh Reconstruction via Bilevel Online Adaptation [paper](https://drive.google.com/file/d/1b6e3rMrVn_xNhM-MitqpLtulARdl4M9F/view?usp=sharing) [code](https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fsyguan96%2FDynaBOA&sa=D&sntz=1&usg=AFQjCNHYmgSyYqdKGYNp7W-bAO2MrHfp1w)
##### • MeshLeTemp: Leveraging the Learnable Vertex-Vertex Relationship to Generalize Human Pose and Mesh Reconstruction for In-the-Wild Scenes [paper](https://arxiv.org/pdf/2202.07228v1.pdf)
##### • Monocular Human Shape and Pose with Dense Mesh-borne Local Image Features [paper](https://arxiv.org/pdf/2111.05319v1.pdf)
##### • Human Performance Capture from Monocular Video in the Wild [paper](https://arxiv.org/pdf/2111.14672.pdf)
##### • Probabilistic Estimation of 3D Human Shape and Pose with a Semantic Local Parametric Model [paper](https://arxiv.org/pdf/2111.15404v1.pdf)
##### • GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras [paper](https://arxiv.org/pdf/2112.01524v1.pdf) [code](https://github.com/NVlabs/GLAMR)
##### • MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images} [paper](https://openreview.net/forum?id=Q-PA3D1OsDz) [code](https://github.com/taconite/MetaAvatar-release)
##### • EgoBody: Human Body Shape, Motion and Social Interactions from Head-Mounted Devices [paper](https://arxiv.org/pdf/2112.07642v1.pdf) [code](https://sanweiliti.github.io/egobody/egobody.html)
##### • Putting People in their Place: Monocular Regression of 3D People in Depth [paper](https://arxiv.org/pdf/2112.08274v1.pdf)
##### • Multi-initialization Optimization Network for Accurate 3D Human Pose and Shape Estimation [paper](https://arxiv.org/pdf/2112.12917v1.pdf)
##### • moothNet: A Plug-and-Play Network for Refining Human Poses in Videos [paper](https://arxiv.org/pdf/2112.13715v1.pdf)
##### • HSPACE: Synthetic Parametric Humans Animated in Complex Environments [paper](https://arxiv.org/pdf/2112.12867v1.pdf)
##### • VoteHMR: Occlusion-Aware Voting Network for Robust 3D Human Mesh Recovery from Partial Point Clouds [paper](https://arxiv.org/pdf/2110.08729.pdf) [code](https://github.com/hanabi7/VoteHMR)
##### • H4D: Human 4D Modeling by Learning Neural Compositional Representation [paper](https://arxiv.org/pdf/2203.01247v1.pdf)
##### • Capturing Humans in Motion: Temporal-Attentive 3D Human Pose and Shape Estimation from Monocular Video [paper](https://arxiv.org/pdf/2203.08534v1.pdf) [code](https://mps-net.github.io/MPS-Net/)
##### • HybridCap: Inertia-aid Monocular Capture of Challenging Human Motions [paper](https://arxiv.org/pdf/2203.09287v1.pdf)
##### • Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes [paper](https://arxiv.org/abs/2104.07300) [code](https://github.com/hongsukchoi/3DCrowdNet_RELEASE)
##### • BodySLAM: Joint Camera Localisation, Mapping, and Human Motion Tracking [paper](https://arxiv.org/pdf/2205.02301v1.pdf)
##### • HULC: 3D Human Motion Capture with Pose Manifold Sampling and Dense Contact Guidance [paper](https://arxiv.org/pdf/2205.05677v1.pdf)
##### • Learned Vertex Descent: A New Direction for 3D Human Model Fitting [paper](https://arxiv.org/pdf/2205.06254v1.pdf) [code](https://github.com/enriccorona/LVD)
##### • MUG: Multi-human Graph Network for 3D Mesh Reconstruction from 2D Pose [paper](https://www.arxivdaily.com/thread/26950)
##### • Accurate 3D Body Shape Regression using Metric and Semantic Attributes [paper](https://arxiv.org/pdf/2206.07036v1.pdf)
##### • Capturing and Inferring Dense Full-Body Human-Scene Contact [homepage](https://rich.is.tue.mpg.de/index.html)
##### • Occluded Human Body Capture with Self-Supervised Spatial-Temporal Motion Prior [paper](https://arxiv.org/pdf/2207.05375v1.pdf)
##### • Live Stream Temporally Embedded 3D Human Body Pose and Shape Estimation [paper](https://arxiv.org/pdf/2207.12537v1.pdf) [code](https://github.com/ostadabbas/TePose)
##### • CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation [paper](https://arxiv.org/pdf/2208.00571.pdf)
##### • FastMETRO: Cross-Attention of Disentangled Modalities for 3D Human Mesh Recovery with Transformers [paper](https://arxiv.org/pdf/2207.13820.pdf)
##### • Parametric Model Estimation for 3D Clothed Humans from Point Clouds [paper](http://www.cad.zju.edu.cn/home/gfzhang/papers/ISMAR2021_3DClothedHumans/3DClothedHumans.pdf) [code](https://github.com/wangkangkan/3DClothedHumans)
##### • Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [paper](https://arxiv.org/pdf/2301.05175v1.pdf) [code](https://github.com/dluvizon/scene-aware-3d-multi-human)
##### • NeMo: 3D Neural Motion Fields from Multiple Video Instances of the Same Action [homepage](https://sites.google.com/view/nemo-neural-motion-field?pli=1)
##### • IKOL: Inverse kinematics optimization layer for 3D human pose and shape estimation via Gauss-Newton differentiation [paper](https://arxiv.org/pdf/2302.01058.pdf) [code](https://github.com/Juzezhang/IKOL)### 3d_human_face
##### • High-Fidelity 3D Digital Human Creation from RGB-D Selfies [paper](https://arxiv.org/pdf/2010.05562.pdf) [code](https://github.com/tencent-ailab/hifi3dface)
##### • StyleUV: Diverse and High-quality UV Map Generative Model [paper](https://arxiv.org/pdf/2011.12893.pdf)
##### • i3DMM: Deep Implicit 3D Morphable Model of Human Heads [paper](https://arxiv.org/pdf/2011.14143v1.pdf)
##### • Relightable 3D Head Portraits from a Smartphone Video [paper](https://arxiv.org/pdf/2012.09963.pdf)
##### • Learning Compositional Radiance Fields of Dynamic Human Heads [paper](https://arxiv.org/pdf/2012.09955.pdf)
##### • SIDER : Single-Image Neural Optimization for Facial Geometric Detail Recovery [paper](https://arxiv.org/pdf/2108.05465v1.pdf)
##### • Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry [paper](https://arxiv.org/pdf/2110.09772.pdf) [code](https://github.com/choyingw/SynergyNet)
##### • HIGH-QUALITY REAL TIME FACIAL CAPTURE BASED ON SINGLE CAMERA [paper](https://arxiv.org/pdf/2111.07556v1.pdf)
##### • Self-supervised High-fidelity and Re-renderable 3D Facial Reconstruction from a Single Imag [paper](https://arxiv.org/pdf/2111.08282.pdf)
##### • Generating Diverse 3D Reconstructions from a Single Occluded Face Image [paper](https://arxiv.org/pdf/2112.00879v1.pdf)
##### • Self-Supervised Robustifying Guidance for Monocular 3D Face Reconstruction [paper](https://arxiv.org/pdf/2112.14382v1.pdf)
##### • BabyNet: Reconstructing 3D faces of babies from uncalibrated photographs [paper](https://arxiv.org/pdf/2203.05908v1.pdf)
##### • S2F2: Self-Supervised High Fidelity Face Reconstruction from Monocular Image [paper](https://arxiv.org/pdf/2203.07732v1.pdf)
##### • Facial Geometric Detail Recovery via Implicit Representation [paper](https://arxiv.org/pdf/2203.09692v1.pdf) [code](https://github.com/deepinsight/insightface/tree/master/reconstruction/PBIDR)
##### • Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [paper](https://arxiv.org/pdf/2204.04379v1.pdf)
##### • From 2D Images to 3D Model: Weakly Supervised Multi-View Face Reconstruction with Deep Fusion [paper](https://arxiv.org/pdf/2204.03842v1.pdf)
##### • F3D face reconstruction with dense landmarks [paper](https://arxiv.org/pdf/2204.02776v1.pdf)
##### • EMOCA: Emotion Driven Monocular Face Capture and Animation [paper](https://arxiv.org/pdf/2204.11312v1.pdf)
##### • Single-Image 3D Face Reconstruction under Perspective Projection [paper](https://arxiv.org/pdf/2205.04126v1.pdf)
##### • AVFace: Towards Detailed Audio-Visual 4D Face Reconstruction [paper](https://arxiv.org/pdf/2304.13115v1.pdf)### 3d_human_head
##### • Auto-Card: Auto-CARD: Efficient and Robust Codec Avatar Driving for Real-time Mobile Telepresence [paper](https://arxiv.org/abs/2304.11835)
##### • DECA: Detailed Expression Capture and Animation [paper](https://arxiv.org/pdf/2012.04012.pdf) [code](https://github.com/YadiraF/DECA?utm_source=catalyzex.com)
##### • Pixel Codec Avatars [paper](https://arxiv.org/pdf/2104.04638.pdf)
##### • H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [paper](https://arxiv.org/pdf/2107.12512v1.pdf)
##### •Towards Metrical Reconstruction of Human Faces [paper](https://arxiv.org/pdf/2204.06607v1.pdf) [code](https://zielon.github.io/mica/)
##### •Data-driven 3D human head reconstruction [paper](https://www.sciencedirect.com/science/article/abs/pii/S0097849319300317)
##### •Dynamic 3D avatar creation from hand-held video input, ACM [paper](http://sofienbouaziz.com/pdf/Avatars_SIGG15.pdf)
##### •Realistic One-shot Mesh-based Head Avatars [paper](https://arxiv.org/pdf/2206.08343.pdf)
##### •Authentic Volumetric Avatars from a Phone Scan [paper](https://drive.google.com/file/d/1i4NJKAggS82wqMamCJ1OHRGgViuyoY6R/view)
##### •Neural Head Avatars from Monocular RGB Videos [homepage](https://philgras.github.io/neural_head_avatars/neural_head_avatars.html)
##### •Towards Metrical Reconstruction of Human Faces [homepage](https://zielon.github.io/mica/)
##### •High-Quality Facial Geometry and Appearance Capture at Home [code](https://github.com/yxuhan/CoRA)### 3D_human_hand
##### • Active Learning for Bayesian 3D Hand Pose Estimation [paper](https://arxiv.org/pdf/2010.00694.pdf) [code](https://github.com/razvancaramalau/al_bhpe)
##### • Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People [paper](https://akincaliskan3d.github.io/MV3DH//resources/ACCV_Cam_Ready_Multi_View_3D_Human.pdf) [code](https://github.com/akcalakcal/Multi_View_Consistent_Single_Image_3D_Human_Reconstruction)
##### • EventHands: Real-Time Neural 3D Hand Reconstruction from an Event Stream
##### • Monocular Real-time Full Body Capture with Inter-part Correlations
##### • Im2Mesh GAN: Accurate 3D Hand Mesh Recovery from a Single RGB Image
##### • HandTailor: Towards High-Precision Monocular 3D Hand Recovery [paper](https://arxiv.org/pdf/2102.09244v1.pdf) [code](https://github.com/LyuJ1998/HandTailor)
##### • Camera-Space Hand Mesh Recovery via Semantic Aggregation and Adaptive 2D-1D Registration [paper](https://arxiv.org/pdf/2103.02845v1.pdf) [code](https://github.com/SeanChenxy/HandMesh)
##### • Model-based 3D Hand Reconstruction via Self-Supervised Learning [paper](https://arxiv.org/pdf/2103.11703v1.pdf) [code](https://github.com/TerenceCYJ/S2HAND)
##### • Action-Conditioned 3D Human Motion Synthesis with Transformer VAE [paper](https://arxiv.org/pdf/2104.05670.pdf)
##### • Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time [paper](https://arxiv.org/pdf/2106.05266v1.pdf)
##### • RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB Video [paper](https://arxiv.org/pdf/2106.11589v1.pdf)
##### • ArtiBoost: Boosting Articulated 3D Hand-Object Pose Estimation via Online Exploration and Synthesis [paper](https://arxiv.org/pdf/2109.05488v1.pdf) [code](https://github.com/MVIG-SJTU/ArtiBoost)
##### • Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements [paper](https://arxiv.org/pdf/2111.00763v1.pdf) [code](https://penincillin.github.io/ihmr_3dv2021)
##### • Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [paper](https://arxiv.org/pdf/2111.06500v1.pdf)
##### • Semi-Supervised 3D Hand Shape and Pose Estimation with Label Propagation [paper](https://arxiv.org/pdf/2111.15199v1.pdf)
##### • MobRecon: Mobile-Friendly Hand Mesh Reconstruction from Monocular Image [paper](https://arxiv.org/pdf/2112.02753v1.pdf) [code](https://github.com/SeanChenxy/HandMesh)
##### • Consistent 3D Hand Reconstruction in Video via Self-Supervised Learning [paper](https://arxiv.org/pdf/2201.09548v1.pdf)
##### • Interacting Attention Graph for Single Image Two-Hand Reconstruction [paper](https://arxiv.org/pdf/2203.09364v1.pdf)
##### • HandOccNet: Occlusion-Robust 3D Hand Mesh Estimation Network [paper](https://arxiv.org/abs/2203.14564) [code](https://github.com/namepllet/HandOccNet)
##### • TOCH: Spatio-Temporal Object Correspondence to Hand for Motion Refinement [paper](https://arxiv.org/pdf/2205.07982v1.pdf)
##### • End-to-End 3D Hand Pose Estimation from Stereo Cameras [paper](https://arxiv.org/pdf/2206.01384v1.pdf)
##### • Efficient Annotation and Learning for 3DHand Pose Estimation: A Survey [paper](https://arxiv.org/pdf/2206.02257v1.pdf)
##### • 3D Interacting Hand Pose Estimation by Hand De-occlusion and Removal [code](https://github.com/MengHao666/HDR)### 3d_cloth
##### • REC-MV: REconstructing 3D Dynamic Cloth from Monucular Videos [github](https://github.com/GAP-LAB-CUHK-SZ/REC-MV)### 3d_hair
##### • NeuralHDHair: Automatic High-fidelity Hair Modeling from a Single Image Using Implicit Neural Representations [paper](https://arxiv.org/pdf/2205.04175v1.pdf) [code](https://github.com/KeyuWu-CS/NeuralHDHair)
##### •3D hair synthesis using volumetric variational autoencoders
##### •AO-CNN: filament-aware hair reconstruction based on volumetric vector fields
##### •Neural Strands: Learning Hair Geometry and Appearance from Multi-View Images [paper](https://arxiv.org/abs/2207.14067)
##### •HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for Single-View 3D Hair Modeling [paper](https://arxiv.org/pdf/2303.02700.pdf) [code](https://github.com/GAP-LAB-CUHK-SZ/HairStep)
##### • MonoHair: High-Fidelity Hair Modeling from a Monocular Video [code]https://github.com/KeyuWu-CS/MonoHair### 3d_teeth
##### • Model-based teeth reconstruction [paper](https://vcai.mpi-inf.mpg.de/projects/MZ/Papers/SGASIA2016_TR/page.html)
##### • An Implicit Parametric Morphable Dental Model [project](https://vcai.mpi-inf.mpg.de/projects/DMM/)### 3d_eyelids
##### • Real-time 3D Eyelids Tracking from Semantic Edges [paper](http://xufeng.site/publications/2017/2017_Real-time%203D%20Eyelids%20Tracking%20from%20Semantic%20Edges-min.pdf)### 3d foot
##### • FIND: An Unsupervised Implicit 3D Model of Articulated Human Feet [project](https://ollieboyne.github.io/FIND/)## related
### human_mattting
##### • Real-Time High-Resolution Background Matting [code](https://github.com/PeterL1n/BackgroundMattingV2)
##### • Real-Time Monocular Human Depth Estimation and Segmentation on Embedded Systems [paper](https://arxiv.org/pdf/2108.10506v1.pdf)
##### • DeepSportLab: a Unified Framework for Ball Detection, Player Instance Segmentation and Pose Estimation in Team Sports Scenes [paper](https://arxiv.org/pdf/2112.00627v1.pdf)
##### • PP-HumanSeg: Connectivity-Aware Portrait Segmentation with a Large-Scale Teleconferencing Video Dataset [paper](https://arxiv.org/pdf/2112.07146v1.pdf) [code](https://github.com/PaddlePaddle/PaddleSeg)
##### • Portrait Segmentation Using Deep Learning [paper](https://arxiv.org/pdf/2202.02705v1.pdf)
##### • Human Instance Matting via Mutual Guidance and Multi-Instance Refinement [paper](https://arxiv.org/pdf/2205.10767v1.pdf) [code](https://github.com/nowsyn/InstMatt)
##### • 3DHumanGAN: Towards Photo-Realistic 3D-Aware Human Image Generation [paper](http://aixpaper.com/view/3dhumangan_towards_photorealistic_3daware_human_image_generation) [code](https://github.com/3dhumangan/3DHumanGAN)
##### • Test-time Adaptation vs. Training-time Generalization: A Case Study in Human Instance Segmentation using Keypoints Estimation [paper](https://arxiv.org/pdf/2212.06242v1.pdf)
##### • Body Segmentation Using Multi-task Learning [paper](https://arxiv.org/pdf/2212.06550v1.pdf)### pose_estimation
##### • CanonPose: Self-Supervised Monocular 3D Human Pose Estimation in the Wild [paper](https://arxiv.org/pdf/2011.14679.pdf)
##### • Active Learning for Bayesian 3D Hand Pose Estimation [paper](https://arxiv.org/pdf/2010.00694v2.pdf) [code](https://github.com/razvancaramalau/al_bhpe)
##### • A-NeRF: Surface-free Human 3D Pose Refinement via Neural Rendering
##### • HandsFormer: Keypoint Transformer for Monocular 3D Pose Estimation of Hands and Object in Interaction [paper](https://arxiv.org/pdf/2104.14639v1.pdf)
##### • HuMoR: 3D Human Motion Model for Robust Pose Estimation [paper](https://geometry.stanford.edu/projects/humor/)
##### • Multi-Person Extreme Motion Prediction with Cross-Interaction Attention [paper](https://arxiv.org/abs/2105.08825)
##### • VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the Wild [paper](https://arxiv.org/pdf/2108.02452v1.pdf)
##### • Gravity-Aware Monocular 3D Human-Object Reconstruction [paper&code](http://4dqv.mpi-inf.mpg.de/GraviCap/)
##### • DensePose 3D: Lifting Canonical Surface Maps of Articulated Objects to the Third Dimension [paper](https://arxiv.org/pdf/2109.00033v1.pdf)
##### • Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images [paper](https://arxiv.org/pdf/2109.05885v1.pdf)
##### • Learning Dynamical Human-Joint Affinity for 3D Pose Estimation in Videos [paper](https://arxiv.org/pdf/2109.07353v1.pdf)
##### • Physics-based Human Motion Estimation and Synthesis from Videos [paper](https://arxiv.org/pdf/2109.09913.pdf)
##### • Real-time, low-cost multi-person 3D pose estimation [paper](https://arxiv.org/pdf/2110.11414v1.pdf)
##### • Direct Multi-view Multi-person 3D Human Pose Estimation [paper](https://arxiv.org/pdf/2111.04076.pdf) [code](https://github.com/sail-sg/mvp)
##### • Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation [code](https://github.com/wmcnally/kapao)
##### • Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning [paper](https://arxiv.org/pdf/2111.15056v1.pdf) [code](https://github.com/hanbyel0105/CamDistHumanPose3D)
##### • In-Bed Human Pose Estimation from Unseen and Privacy-Preserving Image Domains [paper](https://arxiv.org/pdf/2111.15124v1.pdf)
##### • Camera Motion Agnostic 3D Human Pose Estimation [paper](https://github.com/seonghyunkim1212/GMR) [code](https://arxiv.org/pdf/2112.00343v1.pdf)
##### • ElePose: Unsupervised 3D Human Pose Estimation by Predicting Camera Elevation and Learning Normalizing Flows on 2D Poses [paper](https://arxiv.org/pdf/2112.07088v1.pdf)
##### • Multi-modal 3D Human Pose Estimation with 2D Weak Supervision in Autonomous Driving [paper](https://arxiv.org/pdf/2112.12141v1.pdf)
##### • AdaptPose: Cross-Dataset Adaptation for 3D Human Pose Estimation by Learnable Motion Generation [paper](https://arxiv.org/pdf/2112.11593v1.pdf)
##### • FLAG: Flow-based 3D Avatar Generation from Sparse Observations [paper](https://arxiv.org/pdf/2203.05789v1.pdf)
##### • Pose-MUM : Reinforcing Key Points Relationship for Semi-Supervised Human Pose Estimation [paper]()
##### • Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation [paper](https://arxiv.org/pdf/2203.07697v1.pdf)
##### • P-STMO: Pre-Trained Spatial Temporal Many-to-One Model for 3D Human Pose Estimation [paper](https://arxiv.org/pdf/2203.07628v1.pdf) [code](https://github.com/paTRICK-swk/P-STMO)
##### • PosePipe: Open-Source Human Pose Estimation Pipeline for Clinical Research [paper](https://arxiv.org/pdf/2203.08792v1.pdf) [code](https://github.com/peabody124/PosePipeline/)
##### • 3D Human Pose Estimation Using Möbius Graph Convolutional Networks [paper](https://arxiv.org/pdf/2203.10554v1.pdf)
##### • Ray3D: ray-based 3D human pose estimation for monocular absolute 3D localization [paper](https://arxiv.org/pdf/2203.11471v1.pdf) [code](https://github.com/YxZhxn/Ray3D)
##### • YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss [paper](https://arxiv.org/pdf/2204.06806v1.pdf) [code](https://github.com/TexasInstruments/edgeai-yolov5)
##### • Permutation-Invariant Relational Network for Multi-person 3D Pose Estimation [paper](https://arxiv.org/pdf/2204.04913v1.pdf)
##### • Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose Estimation [paper](https://arxiv.org/pdf/2204.01971v1.pdf)
##### • Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery [paper](https://arxiv.org/pdf/2204.01276v1.pdf)
##### • Dite-HRNet: Dynamic Lightweight High-Resolution Network for Human Pose Estimation [paper](https://arxiv.org/pdf/2204.10762v1.pdf)
##### • PedRecNet: Multi-task deep neural network for full 3D human pose and orientation estimation [paper](https://arxiv.org/pdf/2204.11548v1.pdf)
##### • "Teaching Independent Parts Separately" (TIPS-GAN) : Improving Accuracy and Stability in Unsupervised Adversarial 2D to 3D Human Pose Estimation [paper](https://arxiv.org/pdf/2205.05980v1.pdf)
##### •Lightweight Human Pose Estimation Using Heatmap-Weighting Loss [paper](https://arxiv.org/pdf/2205.10611v1.pdf)
##### •VTP: Volumetric Transformer for Multi-view Multi-person 3D Pose Estimation [paper](https://arxiv.org/pdf/2205.12602v1.pdf)
##### •Location-free Human Pose Estimation [paper](https://arxiv.org/pdf/2205.12619v1.pdf)
##### •Trajectory Optimization for Physics-Based Reconstruction of 3d Human Pose from Monocular Video [paper](https://arxiv.org/pdf/2205.12292v1.pdf)
##### •SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low Dimensional Space [paper](https://arxiv.org/pdf/2206.01867v1.pdf)
##### •GraphMLP: A Graph MLP-Like Architecture for 3D Human Pose Estimation [paper](https://arxiv.org/pdf/2206.06420v1.pdf)
##### •BlazePose GHUM Holistic: Real-time 3D Human Landmarks and Pose Estimation [paper](https://arxiv.org/pdf/2206.11678v1.pdf)
##### •Mutual Adaptive Reasoning for Monocular 3D Multi-Person Pose Estimation [paper](https://arxiv.org/pdf/2207.07900v1.pdf)
##### •Human keypoint detection for close proximity human-robot interaction [paper](https://arxiv.org/pdf/2207.07742v1.pdf)
##### •VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data [paper](https://arxiv.org/pdf/2207.09949v1.pdf)
##### •3D Clothed Human Reconstruction in the Wild [paper](https://arxiv.org/pdf/2207.10053v1.pdf) [code](https://github.com/hygenie1228/ClothWild_RELEASE)
##### •EFFICIENT AND ACCURATE SKELETON-BASED TWO-PERSON INTERACTION RECOGNITION USING INTER- AND INTRA-BODY GRAPHS [paper](https://arxiv.org/pdf/2207.12648v1.pdf)
##### •Learning to Estimate 3D Human Pose from Point Cloud [paper](https://arxiv.org/pdf/2212.12910v1.pdf)
##### •Scene-aware Egocentric 3D Human Pose Estimation [paper](https://arxiv.org/pdf/2212.11684v1.pdf)
##### •Advanced Baseline for 3D Human Pose Estimation: A Two-Stage Approach [paper](https://arxiv.org/pdf/2212.11344v1.pdf)
##### •GFPose: Learning 3D Human Pose Prior with Gradient Fields [paper](https://arxiv.org/pdf/2212.08641v1.pdf)
##### •HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for Autonomous Driving [paper](https://arxiv.org/pdf/2212.07729v1.pdf)
##### •TOWARDS SINGLE CAMERA HUMAN 3D-KINEMATICS [paper](https://arxiv.org/pdf/2301.05435v1.pdf)
##### •Markerless Body Motion Capturing for 3D Character Animation based on Multi-view Cameras [paper](https://arxiv.org/pdf/2212.05788v1.pdf)
##### •DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion Probabilistic Model [paper](https://arxiv.org/pdf/2212.02796v1.pdf)
##### •2D Human Pose Estimation with Explicit Anatomical Keypoints Structure Constraints [paper](https://arxiv.org/pdf/2212.02163v1.pdf)
##### •Weakly Supervised 3D Multi-person Pose Estimation for Large-scale Scenes based on Monocular Camera and Single LiDAR [paper](https://arxiv.org/pdf/2211.16951v1.pdf)
##### •Kinematic-aware Hierarchical Attention Network for Human Pose Estimation in Videos [paper](https://github.com/KyungMinJin/HANet) [code](https://github.com/KyungMinJin/HANet)
##### •Proactive Multi-Camera Collaboration for 3D Human Pose Estimation [homepage](https://sites.google.com/view/active3dpose)### registration
##### • LoopReg: Self-supervised Learning of Implicit Surface Correspondences, Pose and Shape for 3D Human Mesh Registration [paper](https://virtualhumans.mpi-inf.mpg.de/papers/bhatnagar2020loopreg/bhatnagar2020loopreg.pdf) [code](https://github.com/bharat-b7/LoopReg)
##### • Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction [paper](https://arxiv.org/pdf/2012.01451.pdf) [code](https://github.com/AljazBozic/NeuralGraph)
##### • FARM: Functional Automatic Registration Method for 3D Human Bodies [paper](https://arxiv.org/abs/1807.10517) [code](https://github.com/riccardomarin/FARM)
##### • Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration [paper](https://arxiv.org/pdf/2104.08160v1.pdf)
##### • Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds [paper](https://arxiv.org/pdf/2107.07539v1.pdf)### correspondence
##### • HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences [paper](https://feitongt.github.io/HumanGPS/paper.pdf)
##### •BodyMap: Learning Full-Body Dense Correspondence Map [paper](https://arxiv.org/pdf/2205.09111v1.pdf)
##### •CorrI2P: Deep Image-to-Point Cloud Registration via Dense Correspondence [paper](https://arxiv.org/pdf/2207.05483v1.pdf)### application
##### • One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing [paper](https://arxiv.org/pdf/2011.15126.pdf)
##### • LipSync3D: Data-Efficient Learning of Personalized 3D Talking Faces from Video using Pose and Lighting Normalization [paper](https://arxiv.org/pdf/2106.04185v1.pdf)
##### • ARShoe: Real-Time Augmented Reality Shoe Try-on System on Smartphones [paper](https://arxiv.org/pdf/2108.10515v1.pdf)
##### • A Neural Anthropometer Learning from Body Dimensions Computed on Human 3D Meshes [paper](https://arxiv.org/pdf/2110.04064v1.pdf)
##### • Robust 3D Garment Digitization from Monocular 2D Images for 3D Virtual Try-On Systems [paper](https://arxiv.org/pdf/2111.15140v1.pdf)
##### • Single-image Human-body Reshaping with Deep Neural Networks [paper](https://arxiv.org/pdf/2203.10496v1.pdf)
##### • Style-Based Global Appearance Flow for Virtual Try-On [paper](https://arxiv.org/pdf/2204.01046v1.pdf)
##### • Monitoring of Pigmented Skin Lesions Using 3D Whole Body Imaging [paper](https://arxiv.org/pdf/2205.07085v1.pdf)
##### • ESTIMATION OF 3D BODY SHAPE AND CLOTHING MEASUREMENTS FROM FRONTALAND SIDE-VIEW IMAGES [paper](https://arxiv.org/pdf/2205.14347v1.pdf)
##### • Dressing Avatars: Deep Photorealistic Appearance for Physically Simulated Clothing [paper](https://arxiv.org/pdf/2206.15470.pdf)
##### • AIFit: Automatic 3D Human-Interpretable Feedback Models for Fitness Training [paper](http://vision.imar.ro/fit3d/)### texture
##### • Spatiotemporal Texture Reconstruction for Dynamic Objects Using a Single RGB-D Camera [paper](https://arxiv.org/pdf/2108.09007v1.pdf)
##### • Semi-supervised Synthesis of High-Resolution Editable Textures for 3D Humans [paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Chaudhuri_Semi-Supervised_Synthesis_of_High-Resolution_Editable_Textures_for_3D_Humans_CVPR_2021_paper.pdf)
##### • StylePeople: A Generative Model of Fullbody Human Avatars [paper](https://arxiv.org/pdf/2104.08363.pdf) [code](https://github.com/saic-vul/style-people)
##### • Refining 3D Human Texture Estimation from a Single Image [paper](https://arxiv.org/pdf/2303.03471v1.pdf)### skin
##### • HeterSkinNet: A Heterogeneous Network for Skin Weights Prediction [paper](https://arxiv.org/pdf/2103.10602.pdf)
##### • SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes [paper](https://arxiv.org/pdf/2104.03953.pdf)### lighting
##### • Relighting Humans in the Wild: Monocular Full-Body Human Relighting with Domain Adaptation [code](https://github.com/majita06/Relighting_in_the_Wild)### talking_head
##### • DisCoHead: Audio-and-Video-Driven Talking Head Generation by Disentangled Control of Head Pose and Facial Expressions [code](https://github.com/deepbrainai-research/discohead)
##### • Imitator: Personalized Speech-driven 3D Facial Animation [homepage](https://zielon.github.io/insta/)
##### • EmoTalk: Speech-driven emotional disentanglement for 3D face animation [homepage](https://ziqiaopeng.github.io/emotalk/)### uncategorized
##### • Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On [paper](https://arxiv.org/pdf/2009.04592.pdf)
##### • TailorNet: Predicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style [paper](https://arxiv.org/abs/2003.04583) [code](https://github.com/chaitanya100100/TailorNet)
##### • 3DBooSTeR: 3D Body Shape and Texture Recovery [paper](https://arxiv.org/pdf/2010.12670.pdf)
##### • Neural 3D Clothes Retargeting from a Single Image [paper](https://arxiv.org/pdf/2102.00062v1.pdf)
##### • Single-image Full-body Human Relighting [paper](https://arxiv.org/pdf/2107.07259.pdf)
##### • iButter: Neural Interactive Bullet Time Generator for Human Free-viewpoint Rendering [paper](https://arxiv.org/pdf/2108.05577.pdf)
##### • A Riemannian Framework for Analysis of Human Body Surface [paper](https://arxiv.org/pdf/2108.11449v1.pdf)
##### • The Power of Points for Modeling Humans in Clothing [paper&code](https://qianlim.github.io/POP.html)
##### • Neural Human Deformation Transfer [paper](https://arxiv.org/pdf/2109.01588v1.pdf)
##### • 3D Human Texture Estimation from a Single Image with Transformers [paper](https://arxiv.org/pdf/2109.02563v1.pdf)
##### • Learning to Predict Diverse Human Motions from a Single Image via Mixture Density Networks [paper](https://arxiv.org/pdf/2109.05776v1.pdf)
##### • ZFlow: Gated Appearance Flow-based Virtual Try-on with 3D Priors [paper](https://arxiv.org/pdf/2109.07001v1.pdf)
##### • A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis [paper](https://arxiv.org/abs/2110.15678) [code](https://github.com/XingangPan/ShadeGAN)
##### • Action2video: Generating Videos of Human 3D Actions [paper](https://arxiv.org/pdf/2111.06925v1.pdf)
##### • Garment4D: Garment Reconstruction from Point Cloud Sequences [paper](https://papers.nips.cc/paper/2021/file/eb160de1de89d9058fcb0b968dbbbd68-Paper.pdf) [code](https://github.com/hongfz16/Garment4D)
##### • ADG-Pose: Automated Dataset Generation for Real-World Human Pose Estimation [paper](https://arxiv.org/pdf/2202.00753v1.pdf) [code](https://github.com/TeCSAR-UNCC/ADG-Pose)
##### • DiffusionNet: Discretization Agnostic Learning on Surfaces [paper](https://arxiv.org/pdf/2012.00888.pdf)
##### • Text and Image Guided 3D Avatar Generation and Manipulation [paper](https://arxiv.org/pdf/2202.06079v1.pdf) [code](https://catlab-team.github.io/)
##### • Quantification of Occlusion Handling Capability of a 3D Human Pose Estimation Framework [paper](https://arxiv.org/pdf/2203.04113v1.pdf)
##### • Motron: Multimodal Probabilistic Human Motion Forecasting [paper](https://arxiv.org/pdf/2203.04132v1.pdf)
##### • FEXGAN-META: FACIAL EXPRESSION GENERATION WITH META HUMANS [paper](https://arxiv.org/pdf/2203.05975v1.pdf)
##### • ActFormer: A GAN Transformer Framework towards General Action-Conditioned 3D Human Motion Generation
##### • Domain Adaptive Hand Keypoint and Pixel Localization in the Wild [paper](https://arxiv.org/pdf/2203.08344v1.pdf)
##### • Portrait Eyeglasses and Shadow Removal by Leveraging 3D Synthetic Data [paper](https://arxiv.org/pdf/2203.10474v1.pdf)
##### • Recognition of Freely Selected Keypoints on Human Limbs [paper](https://arxiv.org/pdf/2204.06326v1.pdf)
##### • What’s in your hands? 3D Reconstruction of Generic Objects in Hands [paper](https://arxiv.org/pdf/2204.07153v1.pdf) [code](https://github.com/JudyYe/ihoi)
##### • CHORE: Contact, Human and Object REconstruction from a single RGB image [paper](https://arxiv.org/pdf/2204.02445v1.pdf)
##### • SNUG: Self-Supervised Neural Dynamic Garments [paper](https://arxiv.org/pdf/2204.02219v1.pdf)
##### • 3D Magic Mirror: Clothing Reconstruction from a Single Image via a Causal Perspective [paper](https://arxiv.org/pdf/2204.13096v1.pdf)
##### • Fake it till you make it: face analysis in the wild using synthetic data alone [homepage](https://microsoft.github.io/FaceSynthetics/)
##### • AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars [paper](https://arxiv.org/pdf/2205.08535v1.pdf) [code](https://github.com/hongfz16/AvatarCLIP)
##### • Scene Aware Person Image Generation through Global Contextual Conditioning [paper](https://arxiv.org/pdf/2206.02717v1.pdf)
##### • HairFIT: Pose-Invariant Hairstyle Transfer via Flow-based Hair Alignment and Semantic-Region-Aware Inpainting [paper](https://arxiv.org/pdf/2206.08585v1.pdf)
##### • From a few Accurate 2D Correspondences to 3D Point Clouds [paper](https://arxiv.org/pdf/2206.08749v1.pdf)
##### • Convolutional Neural Network Based Partial Face Detection [paper](https://arxiv.org/pdf/2206.14350v1.pdf)
##### • SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection [paper](https://arxiv.org/pdf/2207.07898v1.pdf) [code](https://github.com/Hydragon516/SPSN)
##### • Detecting Humans in RGB-D Data with CNNs [paper](https://arxiv.org/pdf/2207.08064v1.pdf)
##### • Animation from Blur: Multi-modal Blur Decomposition with Motion Guidance [paper](https://arxiv.org/pdf/2207.10123.pdf)
##### • 3D Shape Sequence of Human Comparison and Classification using Current and Varifolds [paper](https://arxiv.org/pdf/2207.12485v1.pdf) [code](https://github.com/CRISTAL-3DSAM/HumanComparisonVarifolds)
##### • KinePose: A temporally optimized inverse kinematics technique for 6DOF human pose estimation with biomechanical constraints [paper](https://arxiv.org/pdf/2207.12841v1.pdf) [code](https://github.com/KevGildea/KinePose)
##### • Skeleton-free Pose Transfer for Stylized 3D Character [paper](https://www.arxiv-vanity.com/papers/2208.00790/?continueFlag=acd9680585ca1db48ed3cbc277e4da97)
##### • Learning Continuous Mesh Representation with Spherical Implicit Surface [paper](https://arxiv.org/pdf/2301.04695v1.pdf)
##### • Scene Synthesis from Human Motion [paper](https://arxiv.org/pdf/2301.01424v1.pdf)
##### • Ego-Body Pose Estimation via Ego-Head Pose Estimation [paper](https://arxiv.org/pdf/2212.04636v1.pdf)
##### • Physically Plausible Animation of Human Upper Body from a Single Image [paper](https://arxiv.org/pdf/2212.04741v1.pdf)## parametric model
### body
##### • SMPL: A Skinned Multi-Person Linear Model [paper](https://files.is.tue.mpg.de/black/papers/SMPL2015.pdf) [code](https://github.com/CalciferZh/SMPL)
##### • Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [paper](https://arxiv.org/abs/1904.05866) [code](https://github.com/vchoutas/smplx)
##### • STAR: Sparse Trained Articulated Human Body Regressor [paper](https://arxiv.org/abs/2008.08535) [code](https://github.com/ahmedosman/STAR)
### face
##### • Basel Face Model 2009 [website](http://faces.cs.unibas.ch/bfm/?nav=1-0&id=basel_face_model)
##### • Basel Face Model 2017 [website](http://faces.cs.unibas.ch/bfm/bfm2017.html)
##### • Large Scale 3D Morphable Model [website](https://xip.uclb.com/i/healthcare_tools/LSFM.html)
##### • A Morphable Face Albedo Model [github](https://github.com/waps101/AlbedoMM)
##### • Learning a 3D Morphable Face Reflectance Model from Low-cost Data [paper](https://arxiv.org/pdf/2303.11686.pdf) [code](https://github.com/yxuhan/ReflectanceMM)### head
##### • FLAME: Articulated Expressive Head Model [website](http://flame.is.tue.mpg.de/)
### hand
##### • MANO [paper](https://ps.is.mpg.de/uploads_file/attachment/attachment/392/Embodied_Hands_SiggraphAsia2017.pdf) [website](https://mano.is.tue.mpg.de/)
##### • NIMBLE: A Non-rigid Hand Model with Bones and Muscles [paper](https://arxiv.org/pdf/2202.04533v1.pdf)
### method
##### •GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models [github](https://github.com/google-research/google-research/tree/master/ghum)
##### •Large Scale 3D Morphable Models [paper](https://link.springer.com/article/10.1007/s11263-017-1009-7) [code](https://github.com/menpo/lsfm)
##### •Morphable Face Models - An Open Framework [paper](https://arxiv.org/abs/1709.08398) [code](https://github.com/unibas-gravis/basel-face-pipeline)## dataset
### face
##### • MAAD-Face: A Massively Annotated Attribute Dataset for Face Images [paper](https://github.com/pterhoer/MAAD-Face)
##### • FaceScape: 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction [paper](https://arxiv.org/pdf/2111.01082v1.pdf)
##### • 300W-LP & AFLW2000-3D [homepage](http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm)
##### • AFLW [website](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/)
##### • REALY: Rethinking the Evaluation of 3D Face Reconstruction [paper](https://arxiv.org/pdf/2203.09729v1.pdf) [website](https://www.realy3dface.com/)
##### • FaceVerse-High Quality 3D Face Dataset [github](https://github.com/LizhenWangT/FaceVerse-Dataset)
##### • DAD-3DHeads: A Large-scale Dense, Accurate and Diverse Dataset for 3D Head Alignment from a Single Image [paper](https://arxiv.org/pdf/2204.03688v1.pdf) [github](https://github.com/PinataFarms/DAD-3DHeads)
##### • Multiface: A Dataset for Neural Face Rendering [paper](https://arxiv.org/pdf/2207.11243.pdf)
##### • DAD-3DHeads: A Large-scale Dense, Accurate and Diverse Dataset for 3D Head Alignment from a Single Image [paper](https://arxiv.org/abs/2204.03688)
##### • mimicme [github](https://github.com/apapaion/mimicme)
### hand
##### • GRAB: A Dataset of Whole-Body Human Grasping of Objects [github](https://github.com/otaheri/GRAB)
##### • Reconstructing Hand-Object Interactions in the Wild [github](https://github.com/ZheC/MOW)
##### • Ego2HandsPose: A Dataset for Egocentric Two-hand 3D Global Pose Estimation [paper](https://arxiv.org/pdf/2206.04927v1.pdf)
##### • Interhand2.6M
### body
##### • NTU60-X: TOWARDS SKELETON-BASED RECOGNITION OF SUBTLE HUMAN ACTIONS [code](https://arxiv.org/pdf/2101.11529.pdf)
##### • AGORA: Avatars in Geography Optimized for Regression Analysis [homepage](https://agora.is.tue.mpg.de/)
##### • AMASS: Archive of Motion Capture as Surface Shapes [paper](https://arxiv.org/pdf/1904.03278.pdf) [github](https://github.com/nghorbani/amass)
##### • ASL-Skeleton3D and ASL-Phono: Two Novel Datasets for the American Sign Language [paper](https://arxiv.org/pdf/2201.02065v1.pdf)
##### •MPI-INF-3DHP [homepage](https://vcai.mpi-inf.mpg.de/3dhp-dataset/)
##### •Human3.6M [website](http://vision.imar.ro/human3.6m/description.php)
##### •3DPW [website](https://virtualhumans.mpi-inf.mpg.de/3DPW/)
##### •PennAction [website](http://dreamdragon.github.io/PennAction/)
##### •Insta Variety [github](https://github.com/akanazawa/human_dynamics/blob/master/doc/insta_variety.md)
##### •PoseTrack [homapage](https://posetrack.net/)
##### •Kinetics-400 [website](https://deepmind.com/research/open-source/kinetics)
##### •RenderPeople [website](https://renderpeople.com/)
##### •BUFF [website](https://buff.is.tue.mpg.de/)
##### •People Snapshot Dataset [homepage](https://graphics.tu-bs.de/people-snapshot)
##### •Multi-Garment [homepage](https://virtualhumans.mpi-inf.mpg.de/mgn/)
##### •iPER [website](https://svip-lab.github.io/dataset/iPER_dataset.html)
##### •ZJU-MoCap [homepage](https://chingswy.github.io/Dataset-Demo/)
##### •SmartPortraits: Depth Powered Handheld Smartphone Dataset of Human Portraits for State Estimation, Reconstruction and Synthesis [paper](https://arxiv.org/pdf/2204.10211v1.pdf)
##### •MVP-Human Dataset for 3D Human Avatar Reconstruction from Unconstrained Frames [paper](https://arxiv.org/pdf/2204.11184v1.pdf)
##### •HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling [paper](https://arxiv.org/pdf/2204.13686v1.pdf) [github](https://github.com/caizhongang/humman_toolbox)
##### •3DMPB-dataset [github](https://github.com/boycehbz/3DMPB-dataset)
##### •imar_vision_datasets_tools [github](https://github.com/sminchisescu-research/imar_vision_datasets_tools)
##### •RICH: Real scenes, Interaction, Contacts and Humans [github](https://github.com/paulchhuang/rich_toolkit)
##### •Cloth3d [github](https://github.com/hbertiche/CLOTH3D)
##### •DDH-QA [arxiv](https://arxiv.org/pdf/2212.12734v1.pdf)
##### •H3WB: Human3.6M 3D WholeBody Dataset and Benchmark [github](https://github.com/wholebody3d/wholebody3d)
##### •LightStage [homepage](https://chingswy.github.io/Dataset-Demo/)
### whole body
##### •Motion-X [homepage](https://motion-x-dataset.github.io/)
### foot
##### •FIND: An Unsupervised Implicit 3D Model of Articulated Human Feet [github](https://github.com/OllieBoyne/Foot3D)
### method
##### •NeuralAnnot: Neural Annotator for 3D Human Mesh Training Sets [paper](https://arxiv.org/pdf/2011.11232.pdf)### others
##### • K-Hairstyle: A Large-scale Korean hairstyle dataset for virtual hair editing and hairstyle classification [homepage](https://www.arxiv-vanity.com/papers/2102.06288/)
##### • Simulated garment dataset for virtual try-on [address](https://github.com/isantesteban/vto-dataset)
##### • DeepFashion [homepage](https://liuziwei7.github.io/projects/DeepFashion.html)
##### • Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [paper](https://arxiv.org/pdf/2205.06218v1.pdf)
##### • 3A-GAN: Facial Flow for Face Animation with Generative Adversarial Networks [paper](https://arxiv.org/pdf/2205.06204v1.pdf)
##### • Scanned Objects by Google Research [website](https://ai.googleblog.com/2022/06/scanned-objects-by-google-research.html?continueFlag=69eb10990d1859f21dd21d22d96e2b22)
##### • EasyPortrait - Face Parsing and Portrait Segmentation Dataset [github](https://anonymous.4open.science/r/anonymous-dataset-pep8/README.md)## labs
##### • max planck institute [website](https://ps.is.tuebingen.mpg.de/publications)
##### • Yebin Liu [website](http://www.liuyebin.com/)
##### • ZJU3DV [github](https://github.com/zju3dv)
##### • Hujun Bao [google scholar](https://scholar.google.com/citations?hl=zh-CN&user=AZCcDmsAAAAJ&view_op=list_works&sortby=pubdate)
##### • USTC-3DV [homepage](http://staff.ustc.edu.cn/~juyong/index.html)
##### • Hao_Li [homepage](http://www.hao-li.com/Hao_Li/Hao_Li_-_about_me.html)## other related awesome
##### • awesome-clothed-human [github](https://github.com/weihaox/awesome-clothed-human)
##### • curated-list-of-awesome-3D-Morphable-Model-software-and-data [github](https://github.com/3d-morphable-models/curated-list-of-awesome-3D-Morphable-Model-software-and-data)
##### • awesome-hand-pose-estimation [github](https://github.com/xinghaochen/awesome-hand-pose-estimation)
##### • Awesome 3D Body Papers [github](https://github.com/3DFaceBody/awesome-3dbody-papers)
##### • Body_Reconstruction_References [github](https://github.com/chenweikai/Body_Reconstruction_References#data-and-code)
##### • 3D-face-reconstruction-paper-list [github](https://github.com/czh-98/3D-face-reconstruction-paper-list)
##### • awesome_talking_face_generation [github](https://github.com/YunjinPark/awesome_talking_face_generation)
##### • CG&3DV Twitter [github](https://github.com/USTC3DV/Truck_of_Twitter_Messages)
##### • FLAME-Universe [github](https://github.com/TimoBolkart/FLAME-Universe)
##### • human-motion-capture [github](https://github.com/visonpon/human-motion-capture)## survey
##### • Recovering 3D Human Mesh from Monocular Images: A Survey [paper](https://arxiv.org/pdf/2203.01923v1.pdf) [github](https://github.com/tinatiansjz/hmr-survey)
##### • 2D Human Pose Estimation: A Survey [paper](https://arxiv.org/pdf/2204.07370v1.pdf)
##### • A Survey of Non-Rigid 3D Registration [paper](https://arxiv.org/pdf/2203.07858v1.pdf)
##### • 3D Face Reconstruction in Deep Learning Era: A Survey [paper](https://link.springer.com/article/10.1007/s11831-021-09705-4)
##### • Towards efficient and photorealistic 3D human reconstruction: A brief survey [paper](https://www.sciencedirect.com/science/article/pii/S2468502X21000413)
##### • Survey on 3D face reconstruction from uncalibrated images [paper](https://arxiv.org/abs/2011.05740)
##### • State of the Art on 3D Reconstruction with RGB-D Cameras [paper](https://zollhoefer.com/papers/EG18_RecoSTAR/paper.pdf)
##### • Awesome-AIGC-3D [github](https://github.com/hitcslj/Awesome-AIGC-3D.git)
##### • Awesome Digital Human [github](https://github.com/weihaox/awesome-digital-human.git)
##### • Awesome-AIGC-3D [github](https://github.com/hitcslj/Awesome-AIGC-3D.git)