Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rmitsch/tale
Tool for Annotation of Low-dimensional Embeddings.
https://github.com/rmitsch/tale
Last synced: 2 days ago
JSON representation
Tool for Annotation of Low-dimensional Embeddings.
- Host: GitHub
- URL: https://github.com/rmitsch/tale
- Owner: rmitsch
- License: mit
- Created: 2020-02-07T14:21:35.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2021-03-05T19:21:18.000Z (almost 4 years ago)
- Last Synced: 2024-12-29T10:44:30.908Z (5 days ago)
- Language: Python
- Size: 502 KB
- Stars: 1
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# TALE - Tool for Annotating of Low-dimensional Embeddings
TALE is a **T**ool for **A**nnotation of **L**ow-dimensional **E**mbeddings. It offers functionality to assess, interprete and rate low-dimensional projections, such as those generated by e.g. t-SNE or UMAP. See [todo - add paper link](www.arxiv.org) for a more complete description. It is written in Python (backend) and Javascript (frontend).
This repository contains the [dataset with projection features and user ratings](https://github.com/rmitsch/TALE/blob/master/rated_projection_features.pkl) discussed in the paper.Head over to https://github.com/rmitsch/TALE-backend and https://github.com/rmitsch/TALE-frontend for the actual source code.
TALE allows to explore the parameter space of low-dimensional projections in the global view:
![TALE: Global view](https://github.com/rmitsch/TALE/blob/master/doc/tale_global.png)Individual projections can be inspected, evaluated and rated in the local view:
![TALE: Local view](https://github.com/rmitsch/TALE/blob/master/doc/tale_local.png)## Build Instructions
* Pull source code:
`git clone --recurse-submodules [email protected]:rmitsch/TALE.git`
* Build the Docker image:
`docker build -t tale -f Dockerfile .`
* Alternatively pull the image from Dockerhub:
`docker pull rmitsch/tale`## Generate projections
`docker run -v [host data directory]:/data tale python /TALE-backend/source/generate_data.py [dataset name] [DR kernel name] /data`
`[dataset name]` can be either "happiness" for the UN world happiness study or "movie" for the IMDB movie dataset.
`[DR kernel name]` can be "UMAP", "TSNE" or "SVD".## Run TALE server
`docker run -p 2484:2484 -v [host data directory]:/data tale python /TALE-backend/source/app.py /TALE-frontend /data [experiment name] [Dropbox OAuth Token]`
`[experiment name]` and `[Dropbox OAuth Token]` are optional and only necessary if you want to hook up TALE to a Dropbox account to automatically store the resulting user ratings in the cloud.
## Use TALE
Access in your browser via localhost:2484.
Note: By default, TALE attempts to load t-SNE projections for the world happiness dataset, i. e. assumes that projections have been generated with
`docker run -v [host data directory]:/data tale python /TALE-backend/source/generate_data.py happiness TSNE /data`. If you want to look at another configuration, select it in the dataset and DR kernel dropdowns to the top right and click the load button to their right.