https://github.com/rmodi6/adaboost
Adaptive Boosting of Weak Learners implemented in Python
https://github.com/rmodi6/adaboost
adaboost adaptive-boosting-algorithm cross-validation empirical-risk-minimization machine-learning python38
Last synced: 12 months ago
JSON representation
Adaptive Boosting of Weak Learners implemented in Python
- Host: GitHub
- URL: https://github.com/rmodi6/adaboost
- Owner: rmodi6
- License: mit
- Created: 2020-03-15T02:32:56.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2020-05-08T05:44:37.000Z (almost 6 years ago)
- Last Synced: 2025-01-11T08:09:01.028Z (about 1 year ago)
- Topics: adaboost, adaptive-boosting-algorithm, cross-validation, empirical-risk-minimization, machine-learning, python38
- Language: Jupyter Notebook
- Homepage:
- Size: 37.1 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Adaptive Boosting
The path to dataset can be provided using the `dataset` parameter and `mode` parameter can be used to specify the mode in which to execute adaboost. There are two modes available: `erm` for Empirical Risk Minimization and `cv` for 10 fold Cross Validation. For example:
```bash
python adaboost.py --dataset 'path/to/dataset' --mode erm
```