Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/robinthibaut/skbel
SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn.
https://github.com/robinthibaut/skbel
bayesian-inference gaussian-process gaussian-process-regression gaussian-processes geology groundwater hydrogeology machine-learning multiple-output-regression multivariate-regression pfa sklearn
Last synced: about 1 month ago
JSON representation
SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn.
- Host: GitHub
- URL: https://github.com/robinthibaut/skbel
- Owner: robinthibaut
- License: bsd-3-clause
- Created: 2021-05-20T13:19:16.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-07-09T07:17:20.000Z (6 months ago)
- Last Synced: 2024-09-28T06:32:28.069Z (3 months ago)
- Topics: bayesian-inference, gaussian-process, gaussian-process-regression, gaussian-processes, geology, groundwater, hydrogeology, machine-learning, multiple-output-regression, multivariate-regression, pfa, sklearn
- Language: Python
- Homepage:
- Size: 118 MB
- Stars: 21
- Watchers: 3
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.rst
- Contributing: CONTRIBUTING.md
- Funding: FUNDING.yml
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
README
.. -*- mode: rst -*-
|Travis|_ |Doc|_ |Black|_ |PythonVersion|_ |PyPi|_ |DOI|_ |Downloads|_
.. |Travis| image:: https://travis-ci.com/robinthibaut/skbel.svg?branch=master
.. _Travis: https://travis-ci.com/robinthibaut/skbel.. |Doc| image:: https://readthedocs.org/projects/skbel/badge/?version=latest
.. _Doc: https://skbel.readthedocs.io/en/latest/?badge=latest.. |CodeCov| image:: https://codecov.io/gh/robinthibaut/skbel/branch/main/graph/badge.svg?token=S0T9NW3VK6
.. _CodeCov: https://codecov.io/gh/robinthibaut/skbel.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/skbel
.. _PythonVersion: https://img.shields.io/pypi/pyversions/skbel.. |PyPi| image:: https://badge.fury.io/py/skbel.svg
.. _PyPi: https://badge.fury.io/py/skbel.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
.. _Black: https://github.com/psf/black.. |DOI| image:: https://zenodo.org/badge/369214956.svg
.. _DOI: https://zenodo.org/badge/latestdoi/369214956.. |Downloads| image:: https://pepy.tech/badge/skbel
.. _Downloads: https://pepy.tech/project/skbel.. |PythonMinVersion| replace:: 3.7
.. |NumPyMinVersion| replace:: 1.14.6
.. |SciPyMinVersion| replace:: 1.1.0
.. |JoblibMinVersion| replace:: 0.11
.. |MatplotlibMinVersion| replace:: 2.2.2
.. |Scikit-ImageMinVersion| replace:: 0.24.1
.. |PandasMinVersion| replace:: 0.25.0
.. |SeabornMinVersion| replace:: 0.9.0
.. |PytestMinVersion| replace:: 5.0.1.. image:: https://raw.githubusercontent.com/robinthibaut/skbel/master/docs/img/illu-01.png
**skbel** is a Python module for implementing the Bayesian Evidential Learning framework built on top of
scikit-learn and is distributed under the 3-Clause BSD license.For more information, read the `documentation `_ and run the example `notebook `_.
Installation
------------Dependencies
~~~~~~~~~~~~skbel requires:
- Python (>= |PythonMinVersion|)
- Scikit-Learn (>= |Scikit-ImageMinVersion|)
- NumPy (>= |NumPyMinVersion|)
- SciPy (>= |SciPyMinVersion|)
- joblib (>= |JoblibMinVersion|)=======
Skbel plotting capabilities require Matplotlib (>= |MatplotlibMinVersion|).
User installation
~~~~~~~~~~~~~~~~~The easiest way to install skbel is using ``pip`` ::
pip install skbel
Development
-----------We welcome new contributors of all experience levels.
Important links
~~~~~~~~~~~~~~~- Official source code repo: https://github.com/robinthibaut/skbel/
- Download releases: https://pypi.org/project/skbel/
- Issue tracker: https://github.com/robinthibaut/skbel/issuesSource code
~~~~~~~~~~~You can check the latest sources with the command::
git clone https://github.com/robinthibaut/skbel.git
Contributing
~~~~~~~~~~~~Contributors and feedback from users are welcome. Don't hesitate to submit an issue or a PR, or request a new feature.
Testing
~~~~~~~After installation, you can launch the test suite from outside the source
directory (you will need to have ``pytest`` >= |PyTestMinVersion| installed)::pytest skbel
Help and Support
----------------Documentation
~~~~~~~~~~~~~- HTML documentation (latest release): https://skbel.readthedocs.io/en/latest/
Communication
~~~~~~~~~~~~~- Github Discussions: https://github.com/robinthibaut/skbel/discussions
How to cite
----------------Thibaut, Robin, & Maximilian Ramgraber. (2021). SKBEL - Bayesian Evidential Learning framework built on top of scikit-learn (v2.0.0). Zenodo. https://doi.org/10.5281/zenodo.6205242
BibTeX::
@software{thibaut_skbel_2021,
author = {Thibaut, Robin and Maximilian Ramgraber},
title = {{SKBEL} - Bayesian Evidential Learning framework built on top of scikit-learn},
month = {9},
year = 2021,
publisher = {Zenodo},
version = {v2.0.0},
doi = {10.5281/zenodo.6205242},
url = {https://doi.org/10.5281/zenodo.6205242},
}Notebooks and tutorials
------------------------Nolwenn Lesparre, Nicolas Compaire, Thomas Hermans and Robin Thibaut. (2022). 4D Temperature Monitoring with BEL. [Dataset]. Kaggle. doi: 10.34740/kaggle/ds/2275519. url: https://doi.org/10.34740/kaggle/ds/2275519
Thibaut, Robin (2021). WHPA Prediction. [Dataset]. Kaggle. doi:10.34740/kaggle/dsv/2648718. url: https://www.kaggle.com/dsv/2648718
Peer-reviewed publications using SKBEL
--------------------------------------Thibaut, Robin, Nicolas Compaire, Nolwenn Lesparre, Maximilian Ramgraber, Eric Laloy, and Thomas Hermans (Nov. 2022). “Comparing Well and Geophysical Data for Temperature Monitoring Within a Bayesian Experimental Design Framework”. In: Water Resources Research 58 (11). issn: 0043-1397. doi: 10.1029/2022WR033045. url: https://onlinelibrary.wiley.com/doi/10.1029/2022WR033045.
Thibaut, Robin, Eric Laloy, and Thomas Hermans (Dec. 2021). “A new framework for experimental design using Bayesian Evidential Learning: The case of wellhead protection area”. In: Journal of Hydrology 603, p. 126903. issn: 00221694. doi: 10.1016/j.jhydrol.2021.126903. url: https://linkinghub.elsevier.com/retrieve/pii/S0022169421009537.
Research project
----------------Logs and results of the research project are available on the `project page `_.