Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/robitalec/statistical-rethinking-colearning-2022
Statistical Rethinking colearning 2022
https://github.com/robitalec/statistical-rethinking-colearning-2022
bayesian r rethinking rstats stan statistics
Last synced: 10 days ago
JSON representation
Statistical Rethinking colearning 2022
- Host: GitHub
- URL: https://github.com/robitalec/statistical-rethinking-colearning-2022
- Owner: robitalec
- Created: 2022-01-12T23:11:47.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-02-01T15:20:48.000Z (almost 2 years ago)
- Last Synced: 2024-10-11T18:19:48.966Z (26 days ago)
- Topics: bayesian, r, rethinking, rstats, stan, statistics
- Language: R
- Homepage:
- Size: 34.9 MB
- Stars: 5
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.Rmd
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
---
title: Statistical Rethinking colearning 2022
output:
github_document:
toc: true
---```{r include = FALSE}
knitr::opts_chunk$set( fig.path = "graphics/" )
```---
This repository contains resources and information for a colearning group
meeting regularly to discuss lectures and homework assignments from the
[Statistical Rethinking 2022](https://github.com/rmcelreath/stat_rethinking_2022)
course.## Schedule
Adjusting from Richard's schedule for our pace. Note these are meeting dates
indicating when lectures, readings and homework are **assigned**, to be
discussed on/completed by the next meeting.| Meeting date | Lectures | Reading | Homework |
|---|---|---|---|
| 2022-01-13 | [(1) The Golem of Prague](https://youtu.be/cclUd_HoRlo), [(2) Bayesian Inference](https://www.youtube.com/watch?v=guTdrfycW2Q&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN&index=2) | Chapters 1, 2 and 3 | [Homework 1](https://github.com/rmcelreath/stat_rethinking_2022/blob/main/homework/week01.pdf) |
| 2022-01-26 | [(3) Basic Regression](https://www.youtube.com/watch?v=zYYBtxHWE0A), [(4) Categories & Curves](https://youtu.be/QiHKdvAbYII) | Chapter 4 | [Homework 2](https://github.com/rmcelreath/stat_rethinking_2022/blob/main/homework/week02.pdf) |
| 2022-02-11 | [(5) Confounding](https://youtu.be/UpP-_mBvECI), [(6) Even Worse Confounding](https://www.youtube.com/watch?v=NSuTaeW6Orc) | Chapters 5 and 6 | [Homework 3](https://github.com/rmcelreath/stat_rethinking_2022/blob/main/homework/week03.pdf) |
| 2022-02-24 | [(7) Overfitting](https://www.youtube.com/watch?v=odGAAJDlgp8&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN&index=7)| Chapter 7 | |
| 2022-03-11 | [(8) Markov Chain Monte Carlo](https://www.youtube.com/watch?v=Qqz5AJjyugM&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN&index=8&pp=sAQB) | Chapter 8, 9 | [Homework 4](https://github.com/rmcelreath/stat_rethinking_2022/blob/main/homework/week04.pdf) |
| 2022-03-25 | [(9) Logistic and Binomial GLMs](https://www.youtube.com/watch?v=nPi5yGbfxuo&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN&index=9), [(10) Sensitivity and Poisson GLMs](https://www.youtube.com/watch?v=YrwL6t0kW2I) | Chapters 10, 11 | [Homework 5](https://github.com/rmcelreath/stat_rethinking_2022/blob/main/homework/week05.pdf) |
| 2022-04-06 | [(11) Ordered Categories](https://www.youtube.com/watch?v=-397DMPooR8&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN&index=11), [(12) Multilevel Models](https://www.youtube.com/watch?v=SocRgsf202M&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN&index=12) | Chapters 12, 13 | [Homework 6](https://github.com/rmcelreath/stat_rethinking_2022/blob/main/homework/week06.pdf) |
| 2022-04-22 | [(13) Multi-Multilevel Models](https://youtu.be/n2aJYtuGu54), [(14) Correlated varying effects](https://youtu.be/XDoAglqd7ss) | Chapters 13, 14 | [Homework 7](https://github.com/rmcelreath/stat_rethinking_2022/blob/main/homework/week07.pdf) |## Resources
* Lectures: https://github.com/rmcelreath/stat_rethinking_2022#calendar--topical-outline
* Homework: https://github.com/rmcelreath/stat_rethinking_2022/tree/main/homeworkAdditional material using other packages or languages
* Original R: https://github.com/rmcelreath/rethinking/
* R + Tidyverse + ggplot2 + brms: https://bookdown.org/content/4857/
* Python and PyMC3: Python/PyMC3
* Julia and Turing: https://github.com/StatisticalRethinkingJulia and https://github.com/StatisticalRethinkingJulia/TuringModels.jlSee Richard's comments about these here: https://github.com/rmcelreath/stat_rethinking_2022#original-r-flavor
Also, Alec's notes and solutions of the 2019 material: https://github.com/robitalec/statistical-rethinking and https://www.statistical-rethinking.robitalec.ca/
## Installation
Package specific install directions. We'll update these as we go!
Rethinking
* [`rethinking`](https://github.com/rmcelreath/rethinking#installation)
Stan
* [`cmdstanr`](https://mc-stan.org/cmdstanr/articles/cmdstanr.html)
* [`RStan`](https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started)
* [`brms`](r/brms/#how-do-i-install-brms)Targets
* [`targets`](https://github.com/ropensci/targets/#installation)
* [`stantargets`](https://github.com/ropensci/stantargets/#installation)V8, needed for the `dagitty` package
* [`V8`](https://github.com/jeroen/v8#installation)
## Project structure
This repository is structured with a `homework/` folder for homework solutions,
and `notes/` folder for notes. For folks joining in the colearning group,
you are encouraged to make your own branch in this repository and
share your notes and/or homework solutions.The `R/` folder can be used to store reusable functions useful across
homework solutions and your own model situations.For example, the `dag_plot` function makes a DAG plot from a DAG:
```{r readme_dag, cache = TRUE}
library(ggplot2)
library(ggdag)
library(dagitty)source('R/dag_plot.R')
dag <- dagify(
Z ~ A + B,
B ~ A,
exposure = 'A',
outcome = 'Z'
)dag_plot(dag)
```## Branches
See the full list of [branches](https://github.com/robitalec/statistical-rethinking-colearning-2022/branches).
* [Matteo](https://github.com/robitalec/statistical-rethinking-colearning-2022/tree/matteo)
* [Jillian](https://github.com/robitalec/statistical-rethinking-colearning-2022/tree/jillian)
* [Alec](https://github.com/robitalec/statistical-rethinking-colearning-2022/tree/alec)
* [Levi](https://github.com/robitalec/statistical-rethinking-colearning-2022/tree/levi)
* [Katrien](https://github.com/robitalec/statistical-rethinking-colearning-2022/tree/katrien)
* [Bella](https://github.com/robitalec/statistical-rethinking-colearning-2022/tree/bella)
* [Hannah](https://github.com/robitalec/statistical-rethinking-colearning-2022/tree/hannah)
* [Frankie](https://github.com/robitalec/statistical-rethinking-colearning-2022/tree/frankie)## Thanks
Many thanks to Richard McElreath for a continued emphasis on teaching
Bayesian statistics and for providing this incredible resource of lectures
and homework assignments free for everyone.Also thank you to the developers of R, Stan and innumerous R packages that
allow us to pursue this interest.## Code of Conduct
Please note that this project is released with a [Code of
Conduct](CODE_OF_CONDUCT.md). By participating in this project you agree to abide by its terms.