Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/robnewman/load-data-studio-conda
Test repo for loading a Data Studio directly from a Github repo
https://github.com/robnewman/load-data-studio-conda
Last synced: about 1 month ago
JSON representation
Test repo for loading a Data Studio directly from a Github repo
- Host: GitHub
- URL: https://github.com/robnewman/load-data-studio-conda
- Owner: robnewman
- License: mit
- Created: 2024-01-02T19:01:08.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-01-02T19:25:19.000Z (11 months ago)
- Last Synced: 2024-01-03T20:25:32.026Z (11 months ago)
- Size: 7.81 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# load-data-studio-conda
Test repo for loading a Data Studio directly from a Github repo# Install miniconda
1. Use [Homebrew](https://brew.sh/) to install [miniconda](https://formulae.brew.sh/cask/miniconda): `brew install --cask miniconda`
2. Initialize: `conda init "$(basename "${SHELL}")"`
3. Config to use [Conda-Forge](https://conda-forge.org/):```
conda config --add channels conda-forge
conda config --set channel_priority strict
```# Steps to generate a conda environment file
1. Create a conda environment (with specific packages): `conda create --name myjupyterenv python jupyter jupyterlab`
2. Activate the environment: `conda activate myjupyterenv`
3. Generate a YAML file of the environment: `conda env export > environment.yml`
4. Add to the repo: `git add environment.yml`