An open API service indexing awesome lists of open source software.

https://github.com/roboflow/rf-detr

RF-DETR is a real-time object detection model architecture developed by Roboflow, SOTA on COCO & designed for fine-tuning.
https://github.com/roboflow/rf-detr

computer-vision detr machine-learning object-detection rf-detr

Last synced: about 1 hour ago
JSON representation

RF-DETR is a real-time object detection model architecture developed by Roboflow, SOTA on COCO & designed for fine-tuning.

Awesome Lists containing this project

README

          

# RF-DETR: Real-Time SOTA Detection and Segmentation

[![version](https://badge.fury.io/py/rfdetr.svg)](https://badge.fury.io/py/rfdetr)
[![downloads](https://img.shields.io/pypi/dm/rfdetr)](https://pypistats.org/packages/rfdetr)
[![arXiv](https://img.shields.io/badge/arXiv-2511.09554-b31b1b.svg)](https://arxiv.org/abs/2511.09554)
[![python-version](https://img.shields.io/pypi/pyversions/rfdetr)](https://badge.fury.io/py/rfdetr)
[![license](https://img.shields.io/badge/license-Apache%202.0-blue)](https://github.com/roboflow/rfdetr/blob/main/LICENSE)

[![hf space](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SkalskiP/RF-DETR)
[![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb)
[![roboflow](https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg)](https://blog.roboflow.com/rf-detr)
[![discord](https://img.shields.io/discord/1159501506232451173?logo=discord&label=discord&labelColor=fff&color=5865f2&link=https%3A%2F%2Fdiscord.gg%2FGbfgXGJ8Bk)](https://discord.gg/GbfgXGJ8Bk)

RF-DETR is a real-time transformer architecture for object detection and instance segmentation developed by Roboflow. Built on a DINOv2 vision transformer backbone, RF-DETR delivers state-of-the-art accuracy and latency trade-offs on [Microsoft COCO](https://cocodataset.org/#home) and [RF100-VL](https://github.com/roboflow/rf100-vl).

RF-DETR uses a DINOv2 vision transformer backbone and supports both detection and instance segmentation in a single, consistent API. All core models and code are released under the Apache 2.0 license.

https://github.com/user-attachments/assets/add23fd1-266f-4538-8809-d7dd5767e8e6

## Install

To install RF-DETR, install the `rfdetr` package in a [**Python>=3.10**](https://www.python.org/) environment with `pip`.

```bash
pip install rfdetr
```

Install from source


By installing RF-DETR from source, you can explore the most recent features and enhancements that have not yet been officially released. **Please note that these updates are still in development and may not be as stable as the latest published release.**

```bash
pip install https://github.com/roboflow/rf-detr/archive/refs/heads/develop.zip
```

## Benchmarks

RF-DETR achieves state-of-the-art results in both object detection and instance segmentation, with benchmarks reported on Microsoft COCO and RF100-VL. The charts and tables below compare RF-DETR against other top real-time models across accuracy and latency for detection and segmentation. All latency numbers were measured on an NVIDIA T4 using TensorRT, FP16, and batch size 1. For full benchmarking methodology and reproducibility details, see [roboflow/sab](https://github.com/roboflow/single_artifact_benchmarking).

### Detection

rf_detr_1-4_latency_accuracy_object_detection

See object detection benchmark numbers


| Architecture | COCO AP50 | COCO AP50:95 | RF100VL AP50 | RF100VL AP50:95 | Latency (ms) | Params (M) | Resolution |
|:------------:|:--------------------:|:--------------------------:|:--------------------------:|:---------------------------:|:---------------:|:------------:|:-------------:|
| RF-DETR-N | 67.6 | 48.4 | 85.0 | 57.7 | 2.3 | 30.5 | 384x384 |
| RF-DETR-S | 72.1 | 53.0 | 86.7 | 60.2 | 3.5 | 32.1 | 512x512 |
| RF-DETR-M | 73.6 | 54.7 | 87.4 | 61.2 | 4.4 | 33.7 | 576x576 |
| RF-DETR-L | 75.1 | 56.5 | 88.2 | 62.2 | 6.8 | 33.9 | 704x704 |
| RF-DETR-XL | 77.4 | 58.6 | 88.5 | 62.9 | 11.5 | 126.4 | 700x700 |
| RF-DETR-2XL | 78.5 | 60.1 | 89.0 | 63.2 | 17.2 | 126.9 | 880x880 |
| YOLO11-N | 52.0 | 37.4 | 81.4 | 55.3 | 2.5 | 2.6 | 640x640 |
| YOLO11-S | 59.7 | 44.4 | 82.3 | 56.2 | 3.2 | 9.4 | 640x640 |
| YOLO11-M | 64.1 | 48.6 | 82.5 | 56.5 | 5.1 | 20.1 | 640x640 |
| YOLO11-L | 64.9 | 49.9 | 82.2 | 56.5 | 6.5 | 25.3 | 640x640 |
| YOLO11-X | 66.1 | 50.9 | 81.7 | 56.2 | 10.5 | 56.9 | 640x640 |
| YOLO26-N | 55.8 | 40.3 | 76.7 | 52.0 | 1.7 | 2.6 | 640x640 |
| YOLO26-S | 64.3 | 47.7 | 82.7 | 57.0 | 2.6 | 9.4 | 640x640 |
| YOLO26-M | 69.7 | 52.5 | 84.4 | 58.7 | 4.4 | 20.1 | 640x640 |
| YOLO26-L | 71.1 | 54.1 | 85.0 | 59.3 | 5.7 | 25.3 | 640x640 |
| YOLO26-X | 74.0 | 56.9 | 85.6 | 60.0 | 9.6 | 56.9 | 640x640 |
| LW-DETR-T | 60.7 | 42.9 | 84.7 | 57.1 | 1.9 | 12.1 | 640x640 |
| LW-DETR-S | 66.8 | 48.0 | 85.0 | 57.4 | 2.6 | 14.6 | 640x640 |
| LW-DETR-M | 72.0 | 52.6 | 86.8 | 59.8 | 4.4 | 28.2 | 640x640 |
| LW-DETR-L | 74.6 | 56.1 | 87.4 | 61.5 | 6.9 | 46.8 | 640x640 |
| LW-DETR-X | 76.9 | 58.3 | 87.9 | 62.1 | 13.0 | 118.0 | 640x640 |
| D-FINE-N | 60.2 | 42.7 | 84.4 | 58.2 | 2.1 | 3.8 | 640x640 |
| D-FINE-S | 67.6 | 50.6 | 85.3 | 60.3 | 3.5 | 10.2 | 640x640 |
| D-FINE-M | 72.6 | 55.0 | 85.5 | 60.6 | 5.4 | 19.2 | 640x640 |
| D-FINE-L | 74.9 | 57.2 | 86.4 | 61.6 | 7.5 | 31.0 | 640x640 |
| D-FINE-X | 76.8 | 59.3 | 86.9 | 62.2 | 11.5 | 62.0 | 640x640 |

### Segmentation

rf_detr_1-4_latency_accuracy_instance_segmentation

See instance segmentation benchmark numbers


| Architecture | COCO AP50 | COCO AP50:95 | Latency (ms) | Params (M) | Resolution |
|:----------------:|:--------------------:|:-----------------------:|:------------:|:----------:|:----------:|
| RF-DETR-Seg-N | 63.0 | 40.3 | 3.4 | 33.6 | 312x312 |
| RF-DETR-Seg-S | 66.2 | 43.1 | 4.4 | 33.7 | 384x384 |
| RF-DETR-Seg-M | 68.4 | 45.3 | 5.9 | 35.7 | 432x432 |
| RF-DETR-Seg-L | 70.5 | 47.1 | 8.8 | 36.2 | 504x504 |
| RF-DETR-Seg-XL | 72.2 | 48.8 | 13.5 | 38.1 | 624x624 |
| RF-DETR-Seg-2XL | 73.1 | 49.9 | 21.8 | 38.6 | 768x768 |
| YOLOv8-N-Seg | 45.6 | 28.3 | 3.5 | 3.4 | 640x640 |
| YOLOv8-S-Seg | 53.8 | 34.0 | 4.2 | 11.8 | 640x640 |
| YOLOv8-M-Seg | 58.2 | 37.3 | 7.0 | 27.3 | 640x640 |
| YOLOv8-L-Seg | 60.5 | 39.0 | 9.7 | 46.0 | 640x640 |
| YOLOv8-XL-Seg | 61.3 | 39.5 | 14.0 | 71.8 | 640x640 |
| YOLOv11-N-Seg | 47.8 | 30.0 | 3.6 | 2.9 | 640x640 |
| YOLOv11-S-Seg | 55.4 | 35.0 | 4.6 | 10.1 | 640x640 |
| YOLOv11-M-Seg | 60.0 | 38.5 | 6.9 | 22.4 | 640x640 |
| YOLOv11-L-Seg | 61.5 | 39.5 | 8.3 | 27.6 | 640x640 |
| YOLOv11-XL-Seg | 62.4 | 40.1 | 13.7 | 62.1 | 640x640 |
| YOLO26-N-Seg | 54.3 | 34.7 | 2.31 | 2.7 | 640x640 |
| YOLO26-S-Seg | 62.4 | 40.2 | 3.47 | 10.4 | 640x640 |
| YOLO26-M-Seg | 67.8 | 44.0 | 6.32 | 23.6 | 640x640 |
| YOLO26-L-Seg | 69.8 | 45.5 | 7.58 | 28.0 | 640x640 |
| YOLO26-X-Seg | 71.6 | 46.8 | 12.92 | 62.8 | 640x640 |

## Run Models

### Detection

RF-DETR provides multiple model sizes, ranging from Nano to 2XLarge. To use a different model size, replace the class name in the code snippet below with another class from the table.

```python
import requests
import supervision as sv
from PIL import Image
from rfdetr import RFDETRMedium
from rfdetr.util.coco_classes import COCO_CLASSES

model = RFDETRMedium()

image = Image.open(requests.get('https://media.roboflow.com/dog.jpg', stream=True).raw)
detections = model.predict(image, threshold=0.5)

labels = [
f"{COCO_CLASSES[class_id]}"
for class_id
in detections.class_id
]

annotated_image = sv.BoxAnnotator().annotate(image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels)
```

Run RF-DETR with Inference


You can also run RF-DETR models using the Inference library. To switch model size, select the appropriate inference package alias from the table below.

```python
import requests
import supervision as sv
from PIL import Image
from inference import get_model

model = get_model("rfdetr-medium")

image = Image.open(requests.get('https://media.roboflow.com/dog.jpg', stream=True).raw)
predictions = model.infer(image, confidence=0.5)[0]
detections = sv.Detections.from_inference(predictions)

annotated_image = sv.BoxAnnotator().annotate(image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections)
```

| Size | RF-DETR package class | Inference package alias | COCO AP50 | COCO AP50:95 | Latency (ms) | Params (M) | Resolution | License |
|:----:|:---------------------:|:------------------------|:--------------------:|:-------------------------:|:------------:|:----------:|:----------:|:----------:|
| N | `RFDETRNano` | `rfdetr-nano` | 67.6 | 48.4 | 2.3 | 30.5 | 384x384 | Apache 2.0 |
| S | `RFDETRSmall` | `rfdetr-small` | 72.1 | 53.0 | 3.5 | 32.1 | 512x512 | Apache 2.0 |
| M | `RFDETRMedium` | `rfdetr-medium` | 73.6 | 54.7 | 4.4 | 33.7 | 576x576 | Apache 2.0 |
| L | `RFDETRLarge` | `rfdetr-large` | 75.1 | 56.5 | 6.8 | 33.9 | 704x704 | Apache 2.0 |
| XL | `RFDETRXLarge` | `rfdetr-xlarge` | 77.4 | 58.6 | 11.5 | 126.4 | 700x700 | PML 1.0 |
| 2XL | `RFDETR2XLarge` | `rfdetr-2xlarge` | 78.5 | 60.1 | 17.2 | 126.9 | 880x880 | PML 1.0 |

### Segmentation

RF-DETR supports instance segmentation with model sizes from Nano to 2XLarge. To use a different model size, replace the class name in the code snippet below with another class from the table.

```python
import requests
import supervision as sv
from PIL import Image
from rfdetr import RFDETRSegMedium
from rfdetr.util.coco_classes import COCO_CLASSES

model = RFDETRSegMedium()

image = Image.open(requests.get('https://media.roboflow.com/dog.jpg', stream=True).raw)
detections = model.predict(image, threshold=0.5)

labels = [
f"{COCO_CLASSES[class_id]}"
for class_id
in detections.class_id
]

annotated_image = sv.MaskAnnotator().annotate(image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels)
```

Run RF-DETR-Seg with Inference


You can also run RF-DETR-Seg models using the Inference library. To switch model size, select the appropriate inference package alias from the table below.

```python
import requests
import supervision as sv
from PIL import Image
from inference import get_model

model = get_model("rfdetr-seg-medium")

image = Image.open(requests.get('https://media.roboflow.com/dog.jpg', stream=True).raw)
predictions = model.infer(image, confidence=0.5)[0]
detections = sv.Detections.from_inference(predictions)

annotated_image = sv.MaskAnnotator().annotate(image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections)
```

| Size | RF-DETR package class | Inference package alias | COCO AP50 | COCO AP50:95 | Latency (ms) | Params (M) | Resolution | License |
|:----:|:---------------------:|:----------------------------|:--------------------:|:------------------------:|:------------:|:----------:|:----------:|:----------:|
| N | `RFDETRSegNano` | `rfdetr-seg-nano` | 63.0 | 40.3 | 3.4 | 33.6 | 312x312 | Apache 2.0 |
| S | `RFDETRSegSmall` | `rfdetr-seg-small` | 66.2 | 43.1 | 4.4 | 33.7 | 384x384 | Apache 2.0 |
| M | `RFDETRSegMedium` | `rfdetr-seg-medium` | 68.4 | 45.3 | 5.9 | 35.7 | 432x432 | Apache 2.0 |
| L | `RFDETRSegLarge` | `rfdetr-seg-large` | 70.5 | 47.1 | 8.8 | 36.2 | 504x504 | Apache 2.0 |
| XL | `RFDETRSegXLarge` | `rfdetr-seg-xlarge` | 72.2 | 48.8 | 13.5 | 38.1 | 624x624 | Apache 2.0 |
| 2XL | `RFDETRSeg2XLarge` | `rfdetr-seg-2xlarge` | 73.1 | 49.9 | 21.8 | 38.6 | 768x768 | Apache 2.0 |

### Train Models

RF-DETR supports training for both object detection and instance segmentation. You can train models in [Google Colab](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb) or directly on the Roboflow platform. Below you will find a step-by-step video fine-tuning tutorial.

[![rf-detr-tutorial-banner](https://github.com/user-attachments/assets/555a45c3-96e8-4d8a-ad29-f23403c8edfd)](https://youtu.be/-OvpdLAElFA)

## Documentation

Visit our [documentation website](https://rfdetr.roboflow.com) to learn more about how to use RF-DETR.

## License

All source code and model weights are licensed under the Apache License 2.0.
See [`LICENSE.core`](LICENSE.core) for details. RF-DETR XLarge and 2XLarge code and checkpoints are licensed under the
Platform Model License 1.0. See [`LICENSE.platform`](LICENSE.platform) for details.
These models require a Roboflow account to run and fine-tune.

## Acknowledgements

Our work is built upon [LW-DETR](https://arxiv.org/pdf/2406.03459), [DINOv2](https://arxiv.org/pdf/2304.07193), and [Deformable DETR](https://arxiv.org/pdf/2010.04159). Thanks to their authors for their excellent work!

## Citation

If you find our work helpful for your research, please consider citing the following BibTeX entry.

```bibtex
@misc{rf-detr,
title={RF-DETR: Neural Architecture Search for Real-Time Detection Transformers},
author={Isaac Robinson and Peter Robicheaux and Matvei Popov and Deva Ramanan and Neehar Peri},
year={2025},
eprint={2511.09554},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2511.09554},
}
```

## Contribute

We welcome and appreciate all contributions! If you notice any issues or bugs, have questions, or would like to suggest new features, please [open an issue](https://github.com/roboflow/rf-detr/issues/new) or pull request. By sharing your ideas and improvements, you help make RF-DETR better for everyone.