Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rockyzhengwu/FoolNLTK
A Chinese Nature Language Toolkit
https://github.com/rockyzhengwu/FoolNLTK
Last synced: 3 months ago
JSON representation
A Chinese Nature Language Toolkit
- Host: GitHub
- URL: https://github.com/rockyzhengwu/FoolNLTK
- Owner: rockyzhengwu
- License: apache-2.0
- Created: 2017-12-15T01:54:42.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2020-02-17T01:39:50.000Z (almost 5 years ago)
- Last Synced: 2024-09-27T08:47:40.301Z (4 months ago)
- Language: Python
- Size: 115 MB
- Stars: 1,674
- Watchers: 110
- Forks: 386
- Open Issues: 14
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-chinese-ner - foolnltk
- awesome-chinese-nlp - FoolNLTK
README
# FoolNLTK
A Chinese word processing toolkit[Chinese document](./README_CH.md)
## Features
* Although not the fastest, FoolNLTK is probably the most accurate open source Chinese word segmenter in the market
* Trained based on the [BiLSTM model](http://www.aclweb.org/anthology/N16-1030 )
* High-accuracy in participle, part-of-speech tagging, entity recognition
* User-defined dictionary
* Ability to self train models
* Allows for batch processing## Getting Started
*** 2020/2/16 *** update: use bert model train and export model to deploy, [chinese train documentation](./train/README.md)
To download and build FoolNLTK, type:
```bash
get clone https://github.com/rockyzhengwu/FoolNLTK.git
cd FoolNLTK/train```
For detailed [instructions](./train/README.md)* Only tested in Linux Python 3 environment.
### Installation
```bash
pip install foolnltk
```## Usage Intructions
##### For Participles:
```
import fooltext = "一个傻子在北京"
print(fool.cut(text))
# ['一个', '傻子', '在', '北京']
```For participle segmentations, specify a ```-b``` parameter to increase the number of lines segmented every run.
```bash
python -m fool [filename]
```###### User-defined dictionary
The format of the dictionary is as follows: the higher the weight of a word, and the longer the word length is,
the more likely the word is to appear. Word weight value should be greater than 1。```
难受香菇 10
什么鬼 10
分词工具 10
北京 10
北京天安门 10
```
To load the dictionary:```python
import fool
fool.load_userdict(path)
text = ["我在北京天安门看你难受香菇", "我在北京晒太阳你在非洲看雪"]
print(fool.cut(text))
#[['我', '在', '北京', '天安门', '看', '你', '难受', '香菇'],
# ['我', '在', '北京', '晒太阳', '你', '在', '非洲', '看', '雪']]
```To delete the dictionary
```python
fool.delete_userdict();
```##### POS tagging
```
import fooltext = ["一个傻子在北京"]
print(fool.pos_cut(text))
#[[('一个', 'm'), ('傻子', 'n'), ('在', 'p'), ('北京', 'ns')]]
```##### Entity Recognition
```
import fooltext = ["一个傻子在北京","你好啊"]
words, ners = fool.analysis(text)
print(ners)
#[[(5, 8, 'location', '北京')]]
```### Versions in Other languages
* [Java](https://github.com/rockyzhengwu/JFoolNLTK)#### Note
* For any missing model files, try looking in ```sys.prefix```, under ```/usr/local/```