Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ronvoluted/kaggle-nba

Team repository for the NBA Career Prediction Kaggle Competition from UTS Advanced Data Science for Innovation
https://github.com/ronvoluted/kaggle-nba

kaggle machine-learning python

Last synced: 12 days ago
JSON representation

Team repository for the NBA Career Prediction Kaggle Competition from UTS Advanced Data Science for Innovation

Awesome Lists containing this project

README

        

# Kaggle NBA - Group 6 | All-Star
Team repository for the [NBA Career Prediction Kaggle Competition](https://www.kaggle.com/c/uts-advdsi-nba-career-prediction/overview) from UTS Advanced Data Science for Innovation.

- Kai-Ping Wang
- Sampath Pitchandi
- Ron Au

## Option A) Run with pipenv
### Install dependencies
```bash
pipenv install
```
### Run Jupyter Lab
```bash
pipenv run jupyter lab
```

## Option B) Run with Docker
### Build image:

```bash
docker build -t kaggle-nba .
```

### Run image container

#### Windows (cmd):
```cmd
docker run -itp 8888:8888 -v %cd%:/home/kaggle --name all-star kaggle-nba
```

#### Windows (Powershell):
```cmd
docker run -itp 8888:8888 -v ${PWD}:/home/kaggle --name all-star kaggle-nba
```

#### Mac/Linux:
```bash
docker run -itp 8888:8888 -v "$PWD":/home/kaggle --name all-star kaggle-nba
```

## Project Organization

├── Dockerfile <- Document containing build instructions for Docker image
├── LICENSE <- MIT License
├── Makefile <- Makefile with commands like `make data` or `make train`
├── Pipfile <- The requirements file for managing dependency installations
├── Pipfile.lock <- Locks package versions for dependency installations
├── README.md <- The top-level README for developers using this project
├── data
│   ├── external <- Data from third party sources.
│   ├── interim <- Intermediate data that has been transformed.
│   ├── processed <- The final, canonical data sets for modeling.
│   └── raw <- The original, immutable data dump.

├── docs <- A default Sphinx project; see sphinx-doc.org for details

├── models <- Trained and serialized models, model predictions, or model summaries

├── notebooks <- Jupyter notebooks. Naming convention is:
│ _-week_ e.g.
│ wang_kai-ping-week1_1.0-train-data-exploration.ipynb

├── references <- Data dictionaries, manuals, and all other explanatory materials

├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures <- Generated graphics and figures to be used in reporting

├── src <- Source code for use in this project.
│   ├── __init__.py <- Makes src a Python module
│ │
│   ├── data <- Scripts to download or generate data
│   │   └── make_dataset.py
│ │
│   ├── features <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│ │
│   ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│ │
│   └── visualization <- Scripts to create exploratory and results oriented visualizations
│   └── visualize.py

└── tox.ini <- tox file with settings for running tox; see tox.readthedocs.io

---

Project based on the [cookiecutter data science project template](https://drivendata.github.io/cookiecutter-data-science)
#cookiecutterdatascience