Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ropensci/gtfsr

:warning: ARCHIVED :warning: Package for obtaining, validating, viewing, and storing GTFS (transit) data
https://github.com/ropensci/gtfsr

peer-reviewed r r-package rstats

Last synced: about 1 month ago
JSON representation

:warning: ARCHIVED :warning: Package for obtaining, validating, viewing, and storing GTFS (transit) data

Awesome Lists containing this project

README

        

[![Build
Status](http://travis-ci.org/ropensci/gtfsr.svg?branch=master)](http://travis-ci.org/ropensci/gtfsr)
[![codecov.io](http://codecov.io/github/ropensci/gtfsr/coverage.svg?branch=master)](http://codecov.io/github/ropensci/gtfsr?branch=master)
[![](http://badges.ropensci.org/55_status.svg)](https://github.com/ropensci/onboarding/issues/55)

## Description

`gtfsr` is an R package for easily importing, validating, and mapping
transit data that follows the [General Transit Feed Specification
(GTFS)](https://developers.google.com/transit/gtfs/) format.

The `gtfsr` package provides functions for converting files following
the GTFS format into a single `gtfs` data objects. A `gtfs` object can
then be validated for proper data formatting (i.e. if the source data is
properly structured and formatted as a GTFS feed) or have any spatial
data for stops and routes mapped using `leaflet`. The `gtfsr` package
also provides API wrappers for the popular public GTFS feed sharing site
[TransitFeeds](https://transitfeeds.com/), allowing users quick, easy
access to hundreds of GTFS feeds from within R.

## Installation

You can install this package from GitHub using the devtools package:

if (!require(devtools)) {
install.packages('devtools')
}
devtools::install_github('ropensci/gtfsr')

If you have already installed `gtfsr`, you can get the latest version by
running

remove.packages('gtfsr')
devtools::install_github('ropensci/gtfsr')

If you’d like to build the accompanying vignette, then run

devtools::install_github('ropensci/gtfsr', build_vignettes = TRUE)

## Example Usage

``` r
library(gtfsr)
library(magrittr)
library(dplyr)

# set the API key
# set_api_key() # uncomment to set api key

# get the feedlist dataframe and filter out NYC subway
feedlist_df <- get_feedlist() %>%
filter(grepl('NYC Subway GTFS', t, ignore.case= TRUE))

# import NYC gtfs feed by sending the url to `import_gtfs`
NYC <- import_gtfs(feedlist_df$url_d)
#> [1] "agency.txt" "calendar_dates.txt" "calendar.txt"
#> [4] "routes.txt" "shapes.txt" "stop_times.txt"
#> [7] "stops.txt" "transfers.txt" "trips.txt"

# get line (routes) A and B
routes <- NYC[['routes_df']] %>%
slice(which(grepl('a|b', route_id, ignore.case=TRUE))) %>%
'$'('route_id')

# take the NYC `gtfs` object and map routes. includes stops by default.
NYC %>% map_gtfs(route_ids = routes)
```

``` r

# gtfs will plot ALL shapes for a given route_ids. These can be reduced using the `service_ids` option.
ids <- NYC$trips_df %>%
select(route_id, service_id, shape_id) %>%
distinct() %>%
filter(route_id %in% routes)
ids %>% head(5) # see all unique combos of ids
#> # A tibble: 5 x 3
#> route_id service_id shape_id
#>
#> 1 A B20171105WKD A..N43R
#> 2 A B20171105WKD A..S43R
#> 3 A B20171105WKD A..N85R
#> 4 A B20171105WKD A..N54R
#> 5 A B20171105WKD A..N65R

# lets map just the the first row
route_ids <- ids$route_id[1]
service_ids <- ids$service_id[1]
shape_ids <- ids$shape_id[1]

# lets map the specific data with some other options enabled.
NYC %>%
map_gtfs(route_ids = route_ids,
service_ids = service_ids,
shape_ids = shape_ids,
route_colors = 'green', # set the route color
stop_details = TRUE, # get more stop details on click
route_opacity = .5) # change the route opacity
```

[![ropensci\_footer](http://ropensci.org/public_images/github_footer.png)](http://ropensci.org)