Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ropensci/opencv

R bindings for OpenCV
https://github.com/ropensci/opencv

opencv opencv-library r r-package rstats unconf unconf18

Last synced: 3 months ago
JSON representation

R bindings for OpenCV

Awesome Lists containing this project

README

        

# Bindings to 'OpenCV' Computer Vision Library

> Experimenting with computer vision and machine learning in R. This
package exposes some of the available 'OpenCV' algorithms,
such as edge, body or face detection. These can either be applied to analyze
static images, or to filter live video footage from a camera device.

[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/opencv)](http://cran.r-project.org/package=opencv)
[![CRAN RStudio mirror downloads](http://cranlogs.r-pkg.org/badges/opencv)](http://cran.r-project.org/web/packages/opencv/index.html)

## Installation

On Windows and MacOS, the package can be installed directoy from CRAN:

```r
install.packages("opencv")
```

### Install from source

To install from source on MacOS, you need to install the opencv library from homebrew:

```sh
brew install opencv
```

On Ubuntu or Fedora you need [`libopencv-dev`](https://packages.debian.org/testing/libopencv-dev) or [`opencv-devel`](https://src.fedoraproject.org/rpms/opencv):

```sh
sudo apt-get install libopencv-dev
```

And then install the R bindings:

```r
install.packages("opencv", type = "source")
```

## Basic stuff:

Face recognition:

```r
unconf <- ocv_read('https://jeroen.github.io/images/unconf18.jpg')
faces <- ocv_face(unconf)
ocv_write(faces, 'faces.jpg')
```

Or get the face location data:

```r
facemask <- ocv_facemask(unconf)
attr(facemask, 'faces')
```

## Live Webcam Examples

Live face detection:

```r
library(opencv)
ocv_video(ocv_face)
```

Edge detection:

```r
library(opencv)
ocv_video(ocv_edges)
```

## Combine with Graphics

Replaces the background with a plot:

```r
library(opencv)
library(ggplot2)

# get webcam size
test <- ocv_picture()
bitmap <- ocv_bitmap(test)
width <- dim(bitmap)[2]
height <- dim(bitmap)[3]

png('bg.png', width = width, height = height)
par(ask=FALSE)
print(ggplot2::qplot(speed, dist, data = cars, geom = c("smooth", "point")))
dev.off()
bg <- ocv_read('bg.png')
unlink('pg.png')
ocv_video(function(input){
mask <- ocv_mog2(input)
return(ocv_copyto(input, bg, mask))
})
```

Put your face in the plot:

```r
# Overlay face filter
ocv_video(function(input){
mask <- ocv_facemask(input)
ocv_copyto(input, bg, mask)
})
```

## Live Face Survey

Go stand on the left if you're a tidier

```r
library(opencv)

# get webcam size
test <- ocv_picture()
bitmap <- ocv_bitmap(test)
width <- dim(bitmap)[2]
height <- dim(bitmap)[3]

# generates the plot
makeplot <- function(x){
png('bg.png', width = width, height = height, res = 96)
on.exit(unlink('bg.png'))
groups <- seq(0, width, length.out = 4)
left <- rep("left", sum(x < groups[2]))
middle <- rep("middle", sum(x >= groups[2] & x < groups[3]))
right <- rep("right", sum(x >= groups[3]))
f <- factor(c(left, middle, right), levels = c('left', 'middle', 'right'),
labels = c("Tidy!", "Whatever Works", "Base!"))
color = I(c("#F1BB7B", "#FD6467", "#5B1A18"))
plot(f, ylim = c(0, 5),
main = "Are you a tidyer or baser?", col = color)
dev.off()
ocv_read('bg.png')
}

# overlays faces on the plot
ocv_video(function(input){
mask <- ocv_facemask(input)
faces <- attr(mask, 'faces')
bg <- makeplot(faces$x)
return(ocv_copyto(input, bg, mask))
})
```