https://github.com/roscibely/gender-classification
Predicting Gender Using Character-level Machine Learning 🙋 🙋♂️
https://github.com/roscibely/gender-classification
cnn deep-learning deep-neural-networks deeplearning gender-classification gender-detection gender-prediction predicting-gender pytorch
Last synced: 6 months ago
JSON representation
Predicting Gender Using Character-level Machine Learning 🙋 🙋♂️
- Host: GitHub
- URL: https://github.com/roscibely/gender-classification
- Owner: roscibely
- Created: 2021-04-30T19:43:22.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2023-03-07T16:06:52.000Z (about 2 years ago)
- Last Synced: 2023-03-08T18:47:16.598Z (about 2 years ago)
- Topics: cnn, deep-learning, deep-neural-networks, deeplearning, gender-classification, gender-detection, gender-prediction, predicting-gender, pytorch
- Language: Python
- Homepage: https://arxiv.org/abs/2106.10156
- Size: 6.3 MB
- Stars: 4
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Predicting Gender by First Name Using Character-level Machine Learning
We classified the gender of Brazilian names using deep learning and machine learning. See the document [here](https://arxiv.org/abs/2106.10156).
## Download the dataset
```python
url = "https://data.brasil.io/dataset/genero-nomes/nomes.csv.gz"
filename = url.split("/")[-1]
with open(filename, "wb") as f:
r = requests.get(url)
f.write(r.content)
```## Deep learning models
Models: , , , , .
Usage is simple.
```python
testename = prepare_encod_names({"cibely"}) # name are encod as a vector of numbers
resu=(LSTMmodel.predict(testename) > 0.5).astype("int32")
if int(resu)==1:
print('M')
else:
print('F')
out: F
```## Papers
R. C. B. Rego, G. d. S. Nascimento, D. E. d. L. Rodrigues, S. M. Nascimento and V. M. L. Silva, ["Brazilian scientific productivity from a gender perspective during the Covid-19 pandemic: classification and analysis via machine learning,"](https://ieeexplore.ieee.org/document/10015223) in IEEE Latin America Transactions, vol. 21, no. 2, pp. 302-309, Feb. 2023, doi: 10.1109/TLA.2023.10015223.
Rego, R. C., Silva, V. M. & Fernandes, V. M. (2021). [Predicting Gender by First Name Using Character-level Machine Learning](https://arxiv.org/abs/2106.10156v2). arXiv preprint arXiv:2106.10156 v2.
Rego, R. C., & Silva, V. M. (2021). [Predicting gender of Brazilian names using deep learning](https://arxiv.org/abs/2106.10156v1). arXiv preprint arXiv:2106.10156 v1.