An open API service indexing awesome lists of open source software.

https://github.com/rostepifanov/nnspt

A Python library for signal processing with PyTorch. Useful for machine learning.
https://github.com/rostepifanov/nnspt

deep-learning ecg eeg emg machine-learning python signal-processing

Last synced: about 2 months ago
JSON representation

A Python library for signal processing with PyTorch. Useful for machine learning.

Awesome Lists containing this project

README

          

# Neural Network Signal Processing on Torch

![Python version support](https://img.shields.io/pypi/pyversions/nnspt)
[![PyPI version](https://badge.fury.io/py/nnspt.svg)](https://badge.fury.io/py/nnspt)
[![Downloads](https://pepy.tech/badge/nnspt/month)](https://pepy.tech/project/nnspt?versions=0.0.*)

NNSPT is a Python library for neural network signal processing on PyTorch.

## Table of contents
- [Authors](#authors)
- [Installation](#installation)
- [A simple example](#a-simple-example)
- [Available components](#available-components)
- [Citing](#citing)

## Authors
[**Rostislav Epifanov** — Researcher in Novosibirsk]()

## Installation
Installation from PyPI:

```
pip install nnspt
```

Installation from GitHub:

```
pip install git+https://github.com/rostepifanov/nnspt
```

## A simple example
```python
from nnspt.segmentation.unet import Unet

model = Unet(encoder='tv-resnet34')
```

## Available components
#### Encoders

* ResNet

- tv-resnet18
- tv-resnet34
- tv-resnet50
- tv-resnet101
- tv-resnet152

* ResNeXt

- tv-resnext50_32x4d
- tv-resnext101_32x4d
- tv-resnext101_32x8d
- tv-resnext101_32x16d
- tv-resnext101_32x32d
- tv-resnext101_32x48d

* DenseNet

- tv-densenet121
- tv-densenet169
- tv-densenet201
- tv-densenet161

* EfficientNetV1

- timm-efficientnet-b0
- timm-efficientnet-b1
- timm-efficientnet-b2
- timm-efficientnet-b3
- timm-efficientnet-b4
- timm-efficientnet-b5
- timm-efficientnet-b6
- timm-efficientnet-b7

* EfficientNetLite

- timm-efficientnet-lite0
- timm-efficientnet-lite1
- timm-efficientnet-lite2
- timm-efficientnet-lite3
- timm-efficientnet-lite4

#### Pretraining

* Autoencoder

#### Segmentation

* Unet [[paper](https://arxiv.org/abs/1505.04597)]

## Citing

If you find this library useful for your research, please consider citing:

```
@misc{epifanov2023ecgmentations,
Author = {Rostislav Epifanov},
Title = {NNSTP},
Year = {2023},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/rostepifanov/nnspt}}
}
```