https://github.com/rostepifanov/nnspt
A Python library for signal processing with PyTorch. Useful for machine learning.
https://github.com/rostepifanov/nnspt
deep-learning ecg eeg emg machine-learning python signal-processing
Last synced: about 2 months ago
JSON representation
A Python library for signal processing with PyTorch. Useful for machine learning.
- Host: GitHub
- URL: https://github.com/rostepifanov/nnspt
- Owner: rostepifanov
- License: mit
- Created: 2023-12-18T13:21:21.000Z (about 2 years ago)
- Default Branch: master
- Last Pushed: 2024-07-27T08:20:41.000Z (over 1 year ago)
- Last Synced: 2024-09-12T10:58:19.128Z (over 1 year ago)
- Topics: deep-learning, ecg, eeg, emg, machine-learning, python, signal-processing
- Language: Python
- Homepage:
- Size: 63.5 KB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Neural Network Signal Processing on Torch

[](https://badge.fury.io/py/nnspt)
[](https://pepy.tech/project/nnspt?versions=0.0.*)
NNSPT is a Python library for neural network signal processing on PyTorch.
## Table of contents
- [Authors](#authors)
- [Installation](#installation)
- [A simple example](#a-simple-example)
- [Available components](#available-components)
- [Citing](#citing)
## Authors
[**Rostislav Epifanov** — Researcher in Novosibirsk]()
## Installation
Installation from PyPI:
```
pip install nnspt
```
Installation from GitHub:
```
pip install git+https://github.com/rostepifanov/nnspt
```
## A simple example
```python
from nnspt.segmentation.unet import Unet
model = Unet(encoder='tv-resnet34')
```
## Available components
#### Encoders
* ResNet
- tv-resnet18
- tv-resnet34
- tv-resnet50
- tv-resnet101
- tv-resnet152
* ResNeXt
- tv-resnext50_32x4d
- tv-resnext101_32x4d
- tv-resnext101_32x8d
- tv-resnext101_32x16d
- tv-resnext101_32x32d
- tv-resnext101_32x48d
* DenseNet
- tv-densenet121
- tv-densenet169
- tv-densenet201
- tv-densenet161
* EfficientNetV1
- timm-efficientnet-b0
- timm-efficientnet-b1
- timm-efficientnet-b2
- timm-efficientnet-b3
- timm-efficientnet-b4
- timm-efficientnet-b5
- timm-efficientnet-b6
- timm-efficientnet-b7
* EfficientNetLite
- timm-efficientnet-lite0
- timm-efficientnet-lite1
- timm-efficientnet-lite2
- timm-efficientnet-lite3
- timm-efficientnet-lite4
#### Pretraining
* Autoencoder
#### Segmentation
* Unet [[paper](https://arxiv.org/abs/1505.04597)]
## Citing
If you find this library useful for your research, please consider citing:
```
@misc{epifanov2023ecgmentations,
Author = {Rostislav Epifanov},
Title = {NNSTP},
Year = {2023},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/rostepifanov/nnspt}}
}
```