Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/rougier/ml-recipes

A collection of stand-alone Python machine learning recipes
https://github.com/rougier/ml-recipes

algorithm awesome machine-learning neural-network python recipes reinforcement-learning

Last synced: 14 days ago
JSON representation

A collection of stand-alone Python machine learning recipes

Awesome Lists containing this project

README

        

# Machine Learning Recipes

This is a collection of stand-alone Python examples of machine learning
algorithms. Run a specific recipe to see usage and result. Feel free to
contribute an example (recipe should be reasonably small, including usage).

### [Multi-armed bandit (MAB)](https://en.wikipedia.org/wiki/Multi-armed_bandit)

* **Epsilon greedy** ([recipes/MAB/greedy.py](recipes/MAB/greedy.py))
> Sutton, Richard S., Barto, Andrew G. "Reinforcement Learning: An
> Introduction", MIT Press, Cambridge, MA (1998).

* **Softmax** ([recipes/MAB/softmax.py](recipes/MAB/softmax.py))
> Luce, R. Duncan. (1963). "Detection and recognition". In Luce, R. Duncan,
> Bush, Robert. R. & Galanter, Eugene (Eds.), "Handbook of mathematical
> psychology" (Vol. 1), New York: Wiley.

* **Thompson sampling** ([recipes/MAB/thompson.py](recipes/MAB/thompson.py))
> Thompson, William R. On the likelihood that one unknown probability exceeds
> another in view of the evidence of two samples. Biometrika,
> 25(3–4):285–294, 1933. DOI: [10.2307/2332286](http://doi.org/10.2307/2332286)

* **Upper Confidence Bound** ([recipes/MAB/ucb.py](recipes/MAB/ucb.py))
> Lai, T.L and Robbins, Herbert, "Asymptotically efficient adaptive
> allocation rules", Advances in Applied Mathematics 6:1, (1985) DOI:
> [10.1016/0196-8858(85)90002-8](http://doi.org/10.1016/0196-8858(85)90002-8)

### [Artificial Neural Network (ANN)](https://en.wikipedia.org/wiki/Artificial_neural_network)

* **Adaptive Resonance Theory** ([recipes/ANN/art.py](recipes/ANN/art.py))

> Grossberg, Stephen (1987). Competitive learning: From interactive
> activation to adaptive resonance, Cognitive Science, 11, 23-63.

* **Echo State Network** ([recipes/ANN/esn.py](recipes/ANN/esn.py))

> Jaeger, Herbert (2001) The "echo state" approach to analysing and training
> recurrent neural networks. GMD Report 148, GMD - German National Research
> Institute for Computer Science.

* **Simple Recurrent Network** ([recipes/ANN/srn.py](recipes/ANN/srn.py))

> Elman, Jeffrey L. (1990). Finding structure in time. Cognitive Science,
> 14:179–211.

* **Long Short Term Memory** ([nicodjimenez/lstm](https://github.com/nicodjimenez/lstm))

> Hochreiter, Sepp and Schmidhuber, Jürgen (1997) Long Short-Term Memory,
> Neural Computation Vol. 9, 1735-1780

* **Multi-Layer Perceptron** ([recipes/ANN/mlp.py](recipes/ANN/mlp.py))

> Rumelhart, David E., Hinton, Geoffrey E. and Williams, Ronald J. "Learning
> Internal Representations by Error Propagation". Rumelhart, David E.,
> McClelland, James L., and the PDP research group. (editors), Parallel
> distributed processing: Explorations in the microstructure of cognition,
> Volume 1: Foundation. MIT Press, 1986.

* **Perceptron** ([recipes/ANN/perceptron.py](recipes/ANN/perceptron.py))

> Rosenblatt, Frank (1958), "The Perceptron: A Probabilistic Model for
> Information Storage and Organization in the Brain", Cornell Aeronautical
> Laboratory, Psychological Review, v65, No. 6,
> pp. 386–408. DOI:[10.1037/h0042519](http://doi.org/10.1037/h0042519)

* **Kernel perceptron** ([recipes/ANN/kernel-perceptron.py](recipes/ANN/kernel-perceptron.py))

> Aizerman, M. A., Braverman, E. A. and Rozonoer, L.. " Theoretical
> foundations of the potential function method in pattern
> recognition learning.." Paper presented at the meeting of the
> Automation and Remote Control,, 1964.

* **Voted Perceptron** ([recipes/ANN/voted-perceptron.py](recipes/ANN/voted-perceptron.py))

> Y. Freund, R. E. Schapire. "Large margin classification using
> the perceptron algorithm". In: 11th Annual Conference on
> Computational Learning Theory, New York, NY, 209-217, 1998.
> DOI:[10.1023/A:1007662407062](http://doi.org/10.1023/A:1007662407062)

* **Self Organizing Map** ([recipes/ANN/som.py](recipes/ANN/som.py))

> Kohonen, Teuvo. Self-Organization and Associative Memory. Springer, Berlin,
> 1984.

### [Markov Decision Process (MDP)](https://en.wikipedia.org/wiki/Markov_decision_process)

* **Value Iteration** ([recipes/MDP/value-iteration.py](recipes/MDP/value-iteration.py))

> Bellman, Richard (1957). "A Markovian Decision Process". Journal of
> Mathematics and Mechanics. 6.

### [Dimensionality Reduction (DR)](https://en.wikipedia.org/wiki/Dimensionality_reduction)

* **Principal Component Analysis** ([recipes/DR/pca.py](recipes/DR/pca.py))

> Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems
> of Points in Space". Philosophical Magazine. 2 (11): 559–572.
> DOI:[10.1080/14786440109462720](http://doi.org/10.1080/14786440109462720)

* **Eigenface** ([recipes/DR/eigenface.py](recipes/DR/eigenface.py))

> M. Turk & A. Pentland (1991) Eigenfaces for Recognition.
> Journal of cognitive neuroscience, 3(1): 71-86.
> DOI:[10.1162/jocn.1991.3.1.71](https://doi.org/10.1162/jocn.1991.3.1.71)

* **Classical Multidimensional scaling** ([recipes/DR/classical_mds.py](recipes/DR/classical_mds.py))

> W.S. Torgerson (1952) Multidimensional scaling: I. Theory and method
> Psychometrika, 17: 401-419
> DOI:[10.1007/BF02288916](https://doi.org/10.1007/BF02288916)