Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/rsennrich/subword-nmt

Unsupervised Word Segmentation for Neural Machine Translation and Text Generation
https://github.com/rsennrich/subword-nmt

bpe machine-translation neural-machine-translation nmt segmentation subword-units

Last synced: 5 days ago
JSON representation

Unsupervised Word Segmentation for Neural Machine Translation and Text Generation

Awesome Lists containing this project

README

        

Subword Neural Machine Translation
==================================

This repository contains preprocessing scripts to segment text into subword
units. The primary purpose is to facilitate the reproduction of our experiments
on Neural Machine Translation with subword units (see below for reference).

INSTALLATION
------------

install via pip (from PyPI):

pip install subword-nmt

install via pip (from Github):

pip install https://github.com/rsennrich/subword-nmt/archive/master.zip

alternatively, clone this repository; the scripts are executable stand-alone.

USAGE INSTRUCTIONS
------------------

Check the individual files for usage instructions.

To apply byte pair encoding to word segmentation, invoke these commands:

subword-nmt learn-bpe -s {num_operations} < {train_file} > {codes_file}
subword-nmt apply-bpe -c {codes_file} < {test_file} > {out_file}

To segment rare words into character n-grams, do the following:

subword-nmt get-vocab --train_file {train_file} --vocab_file {vocab_file}
subword-nmt segment-char-ngrams --vocab {vocab_file} -n {order} --shortlist {size} < {test_file} > {out_file}

The original segmentation can be restored with a simple replacement:

sed -r 's/(@@ )|(@@ ?$)//g'

If you cloned the repository and did not install a package, you can also run the individual commands as scripts:

./subword_nmt/learn_bpe.py -s {num_operations} < {train_file} > {codes_file}

BEST PRACTICE ADVICE FOR BYTE PAIR ENCODING IN NMT
--------------------------------------------------

We found that for languages that share an alphabet, learning BPE on the
concatenation of the (two or more) involved languages increases the consistency
of segmentation, and reduces the problem of inserting/deleting characters when
copying/transliterating names.

However, this introduces undesirable edge cases in that a word may be segmented
in a way that has only been observed in the other language, and is thus unknown
at test time. To prevent this, `apply_bpe.py` accepts a `--vocabulary` and a
`--vocabulary-threshold` option so that the script will only produce symbols
which also appear in the vocabulary (with at least some frequency).

To use this functionality, we recommend the following recipe (assuming L1 and L2
are the two languages):

Learn byte pair encoding on the concatenation of the training text, and get resulting vocabulary for each:

cat {train_file}.L1 {train_file}.L2 | subword-nmt learn-bpe -s {num_operations} -o {codes_file}
subword-nmt apply-bpe -c {codes_file} < {train_file}.L1 | subword-nmt get-vocab > {vocab_file}.L1
subword-nmt apply-bpe -c {codes_file} < {train_file}.L2 | subword-nmt get-vocab > {vocab_file}.L2

more conventiently, you can do the same with with this command:

subword-nmt learn-joint-bpe-and-vocab --input {train_file}.L1 {train_file}.L2 -s {num_operations} -o {codes_file} --write-vocabulary {vocab_file}.L1 {vocab_file}.L2

re-apply byte pair encoding with vocabulary filter:

subword-nmt apply-bpe -c {codes_file} --vocabulary {vocab_file}.L1 --vocabulary-threshold 50 < {train_file}.L1 > {train_file}.BPE.L1
subword-nmt apply-bpe -c {codes_file} --vocabulary {vocab_file}.L2 --vocabulary-threshold 50 < {train_file}.L2 > {train_file}.BPE.L2

as a last step, extract the vocabulary to be used by the neural network. Example with Nematus:

nematus/data/build_dictionary.py {train_file}.BPE.L1 {train_file}.BPE.L2

[you may want to take the union of all vocabularies to support multilingual systems]

for test/dev data, re-use the same options for consistency:

subword-nmt apply-bpe -c {codes_file} --vocabulary {vocab_file}.L1 --vocabulary-threshold 50 < {test_file}.L1 > {test_file}.BPE.L1

ADVANCED FEATURES
-----------------

On top of the basic BPE implementation, this repository supports:

- BPE dropout (Provilkov, Emelianenko and Voita, 2019): https://arxiv.org/abs/1910.13267
use the argument `--dropout 0.1` for `subword-nmt apply-bpe` to randomly drop out possible merges.
Doing this on the training corpus can improve quality of the final system; at test time, use BPE without dropout.
In order to obtain reproducible results, argument `--seed` can be used to set the random seed.

**Note:** In the original paper, the authors used BPE-Dropout on each new batch separately. You can copy the training corpus several times to get similar behavior to obtain multiple segmentations for the same sentence.

- support for glossaries:
use the argument `--glossaries` for `subword-nmt apply-bpe` to provide a list of subwords and/or regular expressions
that should always be passed to the output without subword segmentation

```
echo "I am flying to Switzerland at noon ." | subword-nmt apply-bpe --codes subword_nmt/tests/data/bpe.ref
I am fl@@ y@@ ing to <@@ coun@@ tr@@ y@@ >@@ S@@ w@@ it@@ z@@ er@@ l@@ and@@ <@@ /@@ coun@@ tr@@ y@@ > at no@@ on .

echo "I am flying to Switzerland at noon ." | subword-nmt apply-bpe --codes subword_nmt/tests/data/bpe.ref --glossaries "\w*" "fly"
I am fly@@ ing to Switzerland at no@@ on .
```

- byte-level BPE: while BPE uses characters as basic units in Sennrich et al., 2016),
[Radford et al., 2019](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
use bytes as basic units. This can be enabled with the argument `--bytes` for `subword-nmt learn-bpe`.
When applying BPE with `subword-nmt apply-bpe`, no argument is necessary: whether characters or bytes are the basic units is stored in the first line of the BPE file.

PUBLICATIONS
------------

The segmentation methods are described in:

```bibtex
@inproceedings{sennrich-etal-2016-neural,
title = "Neural Machine Translation of Rare Words with Subword Units",
author = "Sennrich, Rico and
Haddow, Barry and
Birch, Alexandra",
booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2016",
address = "Berlin, Germany",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P16-1162",
doi = "10.18653/v1/P16-1162",
pages = "1715--1725",
}
```

The best practice advice is described in:

```bibtex
@inproceedings{sennrich-etal-2017-university,
title = "The University of {E}dinburgh{'}s Neural {MT} Systems for {WMT}17",
author = "Sennrich, Rico and
Birch, Alexandra and
Currey, Anna and
Germann, Ulrich and
Haddow, Barry and
Heafield, Kenneth and
Miceli Barone, Antonio Valerio and
Williams, Philip",
booktitle = "Proceedings of the Second Conference on Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W17-4739",
doi = "10.18653/v1/W17-4739",
pages = "389--399",
}
```

HOW IMPLEMENTATION DIFFERS FROM Sennrich et al. (2016)
------------------------------------------------------

This repository implements the subword segmentation as described in Sennrich et al. (2016),
but since version 0.2, there is one core difference related to end-of-word tokens.

In Sennrich et al. (2016), the end-of-word token `` is initially represented as a separate token, which can be merged with other subwords over time:

```
u n d
f u n d
```

Since 0.2, end-of-word tokens are initially concatenated with the word-final character:

```
u n d
f u n d
```

The new representation ensures that when BPE codes are learned from the above examples and then applied to new text, it is clear that a subword unit `und` is unambiguously word-final, and `un` is unambiguously word-internal, preventing the production of up to two different subword units from each BPE merge operation.

`apply_bpe.py` is backward-compatible and continues to accept old-style BPE files. New-style BPE files are identified by having the following first line: `#version: 0.2`

ACKNOWLEDGMENTS
---------------
This project has received funding from Samsung Electronics Polska sp. z o.o. - Samsung R&D Institute Poland, and from the European Union’s Horizon 2020 research and innovation programme under grant agreement 645452 (QT21).