Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/rtavenar/tslearn

The machine learning toolkit for time series analysis in Python
https://github.com/rtavenar/tslearn

dtw dynamic-time-warping machine-learning machine-learning-algorithms machinelearning python time-series time-series-analysis time-series-classification time-series-clustering timeseries

Last synced: about 2 months ago
JSON representation

The machine learning toolkit for time series analysis in Python

Awesome Lists containing this project

README

        


tslearn



The machine learning toolkit for time series analysis in Python



PyPI


Documentation


Build (Azure Pipelines)


Codecov


Downloads


| Section | Description |
|-|-|
| [Installation](#installation) | Installing the dependencies and tslearn |
| [Getting started](#getting-started) | A quick introduction on how to use tslearn |
| [Available features](#available-features) | An extensive overview of tslearn's functionalities |
| [Documentation](#documentation) | A link to our API reference and a gallery of examples |
| [Contributing](#contributing) | A guide for heroes willing to contribute |
| [Citation](#referencing-tslearn) | A citation for tslearn for scholarly articles |

## Installation
There are different alternatives to install tslearn:
* PyPi: `python -m pip install tslearn`
* Conda: `conda install -c conda-forge tslearn`
* Git: `python -m pip install https://github.com/tslearn-team/tslearn/archive/main.zip`

In order for the installation to be successful, the required dependencies must be installed. For a more detailed guide on how to install tslearn, please see the [Documentation](https://tslearn.readthedocs.io/en/stable/?badge=stable#installation).

## Getting started

### 1. Getting the data in the right format
tslearn expects a time series dataset to be formatted as a 3D `numpy` array. The three dimensions correspond to the number of time series, the number of measurements per time series and the number of dimensions respectively (`n_ts, max_sz, d`). In order to get the data in the right format, different solutions exist:
* [You can use the utility functions such as `to_time_series_dataset`.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.utils.html#module-tslearn.utils)
* [You can convert from other popular time series toolkits in Python.](https://tslearn.readthedocs.io/en/stable/integration_other_software.html)
* [You can load any of the UCR datasets in the required format.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.datasets.html#module-tslearn.datasets)
* [You can generate synthetic data using the `generators` module.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.generators.html#module-tslearn.generators)

It should further be noted that tslearn [supports variable-length timeseries](https://tslearn.readthedocs.io/en/stable/variablelength.html).

```python3
>>> from tslearn.utils import to_time_series_dataset
>>> my_first_time_series = [1, 3, 4, 2]
>>> my_second_time_series = [1, 2, 4, 2]
>>> my_third_time_series = [1, 2, 4, 2, 2]
>>> X = to_time_series_dataset([my_first_time_series,
my_second_time_series,
my_third_time_series])
>>> y = [0, 1, 1]
```

### 2. Data preprocessing and transformations
Optionally, tslearn has several utilities to preprocess the data. In order to facilitate the convergence of different algorithms, you can [scale time series](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.preprocessing.html#module-tslearn.preprocessing). Alternatively, in order to speed up training times, one can [resample](https://tslearn.readthedocs.io/en/stable/gen_modules/preprocessing/tslearn.preprocessing.TimeSeriesResampler.html#tslearn.preprocessing.TimeSeriesResampler) the data or apply a [piece-wise transformation](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.piecewise.html#module-tslearn.piecewise).

```python3
>>> from tslearn.preprocessing import TimeSeriesScalerMinMax
>>> X_scaled = TimeSeriesScalerMinMax().fit_transform(X)
>>> print(X_scaled)
[[[0.] [0.667] [1.] [0.333] [nan]]
[[0.] [0.333] [1.] [0.333] [nan]]
[[0.] [0.333] [1.] [0.333] [0.333]]]
```

### 3. Training a model

After getting the data in the right format, a model can be trained. Depending on the use case, tslearn supports different tasks: classification, clustering and regression. For an extensive overview of possibilities, check out our [gallery of examples](https://tslearn.readthedocs.io/en/stable/auto_examples/index.html).

```python3
>>> from tslearn.neighbors import KNeighborsTimeSeriesClassifier
>>> knn = KNeighborsTimeSeriesClassifier(n_neighbors=1)
>>> knn.fit(X_scaled, y)
>>> print(knn.predict(X_scaled))
[0 1 1]
```

As can be seen, the models in tslearn follow the same API as those of the well-known scikit-learn. Moreover, they are fully compatible with it, allowing to use different scikit-learn utilities such as [hyper-parameter tuning and pipelines](https://tslearn.readthedocs.io/en/stable/auto_examples/neighbors/plot_knnts_sklearn.html).

### 4. More analyses

tslearn further allows to perform all different types of analysis. Examples include [calculating barycenters](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.barycenters.html#module-tslearn.barycenters) of a group of time series or calculate the distances between time series using a [variety of distance metrics](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.metrics.html#module-tslearn.metrics).

## Available features

| data | processing | clustering | classification | regression | metrics |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| [UCR Datasets](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.datasets.html#module-tslearn.datasets) | [Scaling](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.preprocessing.html#module-tslearn.preprocessing) | [TimeSeriesKMeans](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html#tslearn.clustering.TimeSeriesKMeans) | [KNN Classifier](https://tslearn.readthedocs.io/en/stable/gen_modules/neighbors/tslearn.neighbors.KNeighborsTimeSeriesClassifier.html#tslearn.neighbors.KNeighborsTimeSeriesClassifier) | [KNN Regressor](https://tslearn.readthedocs.io/en/stable/gen_modules/neighbors/tslearn.neighbors.KNeighborsTimeSeriesRegressor.html#tslearn.neighbors.KNeighborsTimeSeriesRegressor) | [Dynamic Time Warping](https://tslearn.readthedocs.io/en/stable/gen_modules/metrics/tslearn.metrics.dtw.html#tslearn.metrics.dtw) |
| [Generators](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.generators.html#module-tslearn.generators) | [Piecewise](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.piecewise.html#module-tslearn.piecewise) | [KShape](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.KShape.html#tslearn.clustering.KShape) | [TimeSeriesSVC](https://tslearn.readthedocs.io/en/stable/gen_modules/svm/tslearn.svm.TimeSeriesSVC.html#tslearn.svm.TimeSeriesSVC) | [TimeSeriesSVR](https://tslearn.readthedocs.io/en/stable/gen_modules/svm/tslearn.svm.TimeSeriesSVR.html#tslearn.svm.TimeSeriesSVR) | [Global Alignment Kernel](https://tslearn.readthedocs.io/en/stable/gen_modules/metrics/tslearn.metrics.gak.html#tslearn.metrics.gak) |
| Conversion([1](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.utils.html#module-tslearn.utils), [2](https://tslearn.readthedocs.io/en/stable/integration_other_software.html)) | | [KernelKmeans](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.KernelKMeans.html#tslearn.clustering.KernelKMeans) | [LearningShapelets](https://tslearn.readthedocs.io/en/stable/gen_modules/shapelets/tslearn.shapelets.LearningShapelets.html) | [MLP](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.neural_network.html#module-tslearn.neural_network) | [Barycenters](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.barycenters.html#module-tslearn.barycenters) |
| | | | [Early Classification](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.early_classification.html#module-tslearn.early_classification) | | [Matrix Profile](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.matrix_profile.html#module-tslearn.matrix_profile) |

## Documentation

The documentation is hosted at [readthedocs](http://tslearn.readthedocs.io/en/stable/index.html). It includes an [API](https://tslearn.readthedocs.io/en/stable/reference.html), [gallery of examples](https://tslearn.readthedocs.io/en/stable/auto_examples/index.html) and a [user guide](https://tslearn.readthedocs.io/en/stable/user_guide/userguide.html).

## Contributing

If you would like to contribute to `tslearn`, please have a look at [our contribution guidelines](CONTRIBUTING.md). A list of interesting TODO's can be found [here](https://github.com/tslearn-team/tslearn/issues?utf8=✓&q=is%3Aissue%20is%3Aopen%20label%3A%22new%20feature%22%20). **If you want other ML methods for time series to be added to this TODO list, do not hesitate to [open an issue](https://github.com/tslearn-team/tslearn/issues/new/choose)!**

## Referencing tslearn

If you use `tslearn` in a scientific publication, we would appreciate citations:

```bibtex
@article{JMLR:v21:20-091,
author = {Romain Tavenard and Johann Faouzi and Gilles Vandewiele and
Felix Divo and Guillaume Androz and Chester Holtz and
Marie Payne and Roman Yurchak and Marc Ru{\ss}wurm and
Kushal Kolar and Eli Woods},
title = {Tslearn, A Machine Learning Toolkit for Time Series Data},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {118},
pages = {1-6},
url = {http://jmlr.org/papers/v21/20-091.html}
}
```

#### Acknowledgments
Authors would like to thank Mathieu Blondel for providing code for [Kernel k-means](https://gist.github.com/mblondel/6230787) and [Soft-DTW](https://github.com/mblondel/soft-dtw), and to Mehran Maghoumi for his [`torch`-compatible implementation of SoftDTW](https://github.com/Maghoumi/pytorch-softdtw-cuda).