https://github.com/rte-antares-rpackage/unavailabilityproductionentsoe
https://github.com/rte-antares-rpackage/unavailabilityproductionentsoe
Last synced: 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/rte-antares-rpackage/unavailabilityproductionentsoe
- Owner: rte-antares-rpackage
- Created: 2018-10-17T09:08:09.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-04-12T12:23:47.000Z (about 6 years ago)
- Last Synced: 2025-01-31T06:48:01.110Z (4 months ago)
- Language: R
- Size: 24.4 KB
- Stars: 0
- Watchers: 4
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
[](https://ci.appveyor.com/project/rte-antares-rpackage/unavailabilityProductionEntsoe)
[](https://travis-ci.org/rte-antares-rpackage/unavailabilityProductionEntsoe)# The 'unavailabilityProductionEntsoe' R package
The `unavailabilityProductionEntsoe` package provides functions to download, analyze and aggregate indisponibility data fram ENTSOE platform.
## Installation
Todo!
```r
# Install dependenciesdevtools::install_github("rte-antares-rpackage/unavailabilityProductionEntsoe")
```
## Prerequisites
To use this package you must create an account on ENTSOE platform, you will need an acces token.
You can acces to ENTSOE API : https://transparency.entsoe.eu/content/static_content/Static%20content/web%20api/Guide.html## Data download : **getDataOutagesProduction**
#### Arguments :
- **token** : ENTSOE token
- **bz** : ENTSOE build zone use ENTSOE API
- **docType** : "A80" for generation unit and "A77" for produciton unit
- **docStatus** : "A05" for active, "A09" for cancel
- **start** : start date
- **end** : end date
- **fileToMerge** : CSV where data will be save
- **by** : load data by "day", "week", "month", "year"? Maximum of documents load by request is 200.#### Exemple :
```r
library(unavailabilityProductionEntsoe)
token <- "My-token"#NL
getDataOutagesProduction(token = token, bz = "10YNL----------L", docType = "A80",
start = "2018-01-01", end = "2018-02-28", fileToMerge = "NLindispo.csv")
```
## Data visualization : **runIndispoApp**After use of **getDataOutagesProduction**, you have save data in a CSV file. You can visualize data with :
```r
runIndispoApp("NLindispo.csv")
```## Make time series : **giveTS**
#### Arguments :
After use of **getDataOutagesProduction**, you have save data in a CSV file. You can create time series data with giveTS.
- **path** : CSV file load with *getDataOutagesProduction**
- **outFile** : new CSV file (output)
- **minDate** : Date for time series begin
- **maxDate** : Date for time series end
- **overlappingvalues** : operation for overlap, can be "sum" or "min".#### Exemple :
```r
giveTS("NLindispo.csv", outFile = "NLindispoTS.csv")
```## Aggregate time series : **aggregateIndispo**
#### Arguments :
- **path** : CSV file product by giveTS
- **aggregatedCol** : column to aggregate, can be : "date", "hour", "month", "year", "productionType" can also be a vector (c("month", "year"))
- **colDcast** : render result by columns : see exemple#### Exemple :
```r
aggregateIndispo("NLindispoTS.csv", "ag1.csv", c("date", "hour", "productionType"))
aggregateIndispo("NLindispoTS.csv", "ag2.csv", c("date", "hour", "productionType"), colDcast = "productionType")
```