Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ruby-numo/numo-gsl

GSL interface for Ruby/Numo::NArray
https://github.com/ruby-numo/numo-gsl

gsl narray numo ruby ruby-numo scientific-computing

Last synced: 2 months ago
JSON representation

GSL interface for Ruby/Numo::NArray

Awesome Lists containing this project

README

        

# GSL interface for Ruby with Numo::NArray

[GitHub](https://github.com/ruby-numo/numo-gsl) |
[RubyGems](https://rubygems.org/gems/numo-gsl)

* [GSL - GNU Scientific Library](http://www.gnu.org/software/gsl/) - version >=2.0 and <=2.3.
* Pre-alpha version under development.
* Call for help! - writing tests and examples.

# [Numo::GSL API document](http://ruby-numo.github.io/gsl/yard/)

Implemented Modules:

* [Numo::GSL -- Mathematical Functions](http://ruby-numo.github.io/gsl/yard/Numo/GSL.html)
* (Modules/Classes below are defined in Numo::GSL module, e.g., Const => Numo::GSL::Const)
* [Const -- Constants](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Const.html)
* [Poly -- Polynomials](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Poly.html)
* [Sf -- Special Functions](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Sf.html)
* [Rng -- Random Number Generation](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Rng.html)
* [Ran -- Random Number Distributions](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Ran.html)
* [Pdf -- Probability Density Functions](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Pdf.html)
* [Cdf -- Cumulative Distribution Functions](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Cdf.html)
* [Stats -- Statistics](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Stats.html)
* [Rstat -- Running Statistics](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Rstat.html)
* [Histogram -- Histograms](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Histogram.html)
* [Histogram2D -- 2D Histograms](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Histogram2D.html)
* [Spline -- Interpolation](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Spline.html)
* [Spline2D -- 2D Interpolation](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Spline2D.html)
* [Wavelet -- Wavelet Transforms](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Wavelet.html)
* [Wavelet2D -- 2D Wavelet Transforms](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Wavelet2D.html)
* [Fit -- Linear regression](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Fit.html)
* [Multifit -- Multi-parameter regression](http://ruby-numo.github.io/gsl/yard/Numo/GSL/Multifit.html)
* [SpMatrix -- Sparse Matrices](http://ruby-numo.github.io/gsl/yard/Numo/GSL/SpMatrix.html)
* [SpBlas -- Sparse BLAS](http://ruby-numo.github.io/gsl/yard/Numo/GSL/SpBlas.html)
* [SpLinalg -- Sparse Linear Algebra](http://ruby-numo.github.io/gsl/yard/Numo/GSL/SpLinalg.html)

More modules will be implemented.

# Naming convention

```
[C] GSL function/constant => [Ruby] Numo::GSL function/constant
* Constants
M_2_PI => Numo::GSL::M_2_PI
GSL_CONST_MKSA_ANGSTROM => Numo::GSL::Const::MKSA_ANGSTROM
* Module function
gsl_acosh() => Numo::GSL.acosh()
gsl_sf_bessel_J0() => Numo::GSL::Sf.bessel_J0()
* Class method
gsl_rng_alloc() => Numo::GSL::Rng.new
gsl_rng_get() => Numo::GSL::Rng#get
* Subclass
gsl_rng_type *gsl_rng_mt19937; => Numo::GSL::Rng::Mt19937 < Numo::GSL::Rng
* Exception
gsl_ran_gaussian_pdf() => Numo::GSL::Pdf.gaussian
gsl_ran_gaussian() => Numo::GSL::Rng#gaussian (Rng includes Numo::GSL::Ran)
```

# Installation

* Install [Numo::NArray](https://github.com/ruby-numo/narray)
* Install [GSL - GNU Scientific Library](http://www.gnu.org/software/gsl/) version between 2.0 and 2.3.

* Install Numo::GSL

```shell
$ gem install numo-gsl
```

# Quick start

If you're familiar with Docker, the following commands should work in most cases:

```
git clone https://github.com/ruby-numo/numo-gsl
cd gsl
docker build -t numogsl .
docker run -d -p 8888:8888 numogsl start-notebook.sh --NotebookApp.token=''
```

and open a web browser to http://localhost:8888 .

Our Docker image is based on Minimal Jupyter Notebook Stack. See https://github.com/jupyter/docker-stacks/tree/master/minimal-notebook for more details on the Docker command options.