Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ruhyadi/yolo3d-lightning-archive

YOLO for 3D Object Detection
https://github.com/ruhyadi/yolo3d-lightning-archive

Last synced: about 2 months ago
JSON representation

YOLO for 3D Object Detection

Awesome Lists containing this project

README

        

# YOLO3D: 3D Object Detection with YOLO

Python
PyTorch
Lightning

Config: hydra
Code style: black
Template

## ⚠️  Cautions
> This repository currently under development

## 📼  Demo

![demo](./docs/assets/demo.gif)

## 📌  Introduction

Unofficial implementation of [Mousavian et al.](https://arxiv.org/abs/1612.00496) in their paper **3D Bounding Box Estimation Using Deep Learning and Geometry**. YOLO3D uses a different approach, as the detector uses **YOLOv5** which previously used Faster-RCNN, and Regressor uses **ResNet18/VGG11** which was previously VGG19.

## 🚀  Quickstart
> We use hydra as the config manager; if you are unfamiliar with hydra, you can visit the official website or see the tutorial on this web.

### 🍿  Inference
You can use pretrained weight from [Release](https://github.com/ruhyadi/yolo3d-lightning/releases), you can download it using script `get_weights.py`:
```bash
# download pretrained model
python script/get_weights.py \
--tag v0.1 \
--dir ./weights
```
Inference with `inference.py`:
```bash
python inference.py \
source_dir="./data/demo/images" \
detector.model_path="./weights/detector_yolov5s.pt" \
regressor_weights="./weights/regressor_resnet18.pt"
```

### ⚔️  Training
There are two models that will be trained here: **detector** and **regressor**. For now, the detector model that can be used is only **YOLOv5**, while the regressor model can use all models supported by **Torchvision**.

#### 🧭  Training YOLOv5 Detector
The first step is to change the `label_2` format from KITTI to YOLO. You can use the following `src/kitti_to_yolo.py`.

```bash
cd yolo3d-lightning/src
python kitti_to_yolo.py \
--dataset_path ../data/KITTI/training/
--classes ["car", "van", "truck", "pedestrian", "cyclist"]
--img_width 1224
--img_height 370
```

The next step is to follow the [wiki provided by ultralytics](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data). **Note:** *readme will updated in future*.

#### 🪀  Training Regessor
Selanjutnya, kamu dapat melakukan training model regressor. Model regressor yang dapat dipakai bisa mengacu pada yang tersedia di `torchvision`, atau kamu bisa mengkustomnya sendiri.

Langkah pertama adalah membuat train dan validation sets. Kamu dapat menggunakan `script/generate_sets.py`:

```bash
cd yolo3d-lightning/script
python generate_sets.py \
--images_path ../data/KITTI/training/images # or image_2
--dump_dir ../data/KITTI/training
--postfix _80
--train_size 0.8
```

Pada langkah selanjutnya, kita hanya akan menggunakan model yang ada di `torchvision` saja. Langkah termudah adalah dengan mengubah configurasi di `configs.model.regressor.yaml`, seperti di bawah:

```yaml
_target_: src.models.regressor.RegressorModel

net:
_target_: src.models.components.utils.RegressorNet
backbone:
_target_: torchvision.models.resnet18 # edit this
pretrained: True # maybe this too
bins: 2

lr: 0.001
momentum: 0.9
w: 0.4
alpha: 0.6
```

Langkah selanjutnya adalah dengan membuat konfigurasi experiment pada `configs/experiment/your_exp.yaml`. Jika bingung, kamu dapat mengacu pada [`configs/experiment/demo.yaml`](./configs/experiment/demo.yaml).

Setelah konfigurasi experiment dibuat. Kamu dapat dengan mudah menjalankan perintah `train.py`, seperti berikut:

```bash
cd yolo3d-lightning
python train.py \
experiment=demo
```

## ❤️  Acknowledgement

- [YOLOv5 by Ultralytics](https://github.com/ultralytics/yolov5)
- [skhadem/3D-BoundingBox](https://github.com/skhadem/3D-BoundingBox)
- [Mousavian et al.](https://arxiv.org/abs/1612.00496)
```
@misc{mousavian20173d,
title={3D Bounding Box Estimation Using Deep Learning and Geometry},
author={Arsalan Mousavian and Dragomir Anguelov and John Flynn and Jana Kosecka},
year={2017},
eprint={1612.00496},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```