An open API service indexing awesome lists of open source software.

https://github.com/russss/coviddata

Yet another python package for accessing COVID-19 data
https://github.com/russss/coviddata

covid19 data xarray

Last synced: 9 months ago
JSON representation

Yet another python package for accessing COVID-19 data

Awesome Lists containing this project

README

          

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# COVIDdata\n",
"\n",
"Yet another python package for accessing COVID-19 data. Sorry. I have opinions and I don't like all the others.\n",
"\n",
"This package provides methods for fetching various COVID-19 related data sources. Results are provided as [xarray](http://xarray.pydata.org/) datasets, with consistent variable naming and attribution data included.\n",
"\n",
"## Installation\n",
"\n",
"I'm not going to clutter PyPI up with yet another COVID package. Just do `pip install git+https://github.com/russs/coviddata#egg=coviddata`.\n",
"\n",
"\n",
"## Worldwide Data\n",
"\n",
"My preferred wordwide data source is [Our World in Data](https://ourworldindata.org/coronavirus-source-data) which sources their data from the ECDC. The `cases_owid` function downloads this data and returns a Dataset."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"

\n",
"\n",
"\n",
"Show/Hide data repr\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Show/Hide attributes\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
".xr-wrap {\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt, dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"

xarray.Dataset


  • Dimensions:


    • date: 133


    • location: 210




  • Coordinates: (2)



    • location

      (location)

      object

      'Afghanistan' ... 'Zimbabwe'


      array(['Afghanistan', 'Albania', 'Algeria', ..., 'Yemen', 'Zambia', 'Zimbabwe'],\n",
      
      " dtype=object)



    • date

      (date)

      datetime64[ns]

      2019-12-31 ... 2020-05-11


      array(['2019-12-31T00:00:00.000000000', '2020-01-01T00:00:00.000000000',\n",
      
      " '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000',\n",
      " '2020-01-04T00:00:00.000000000', '2020-01-05T00:00:00.000000000',\n",
      " '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000',\n",
      " '2020-01-08T00:00:00.000000000', '2020-01-09T00:00:00.000000000',\n",
      " '2020-01-10T00:00:00.000000000', '2020-01-11T00:00:00.000000000',\n",
      " '2020-01-12T00:00:00.000000000', '2020-01-13T00:00:00.000000000',\n",
      " '2020-01-14T00:00:00.000000000', '2020-01-15T00:00:00.000000000',\n",
      " '2020-01-16T00:00:00.000000000', '2020-01-17T00:00:00.000000000',\n",
      " '2020-01-18T00:00:00.000000000', '2020-01-19T00:00:00.000000000',\n",
      " '2020-01-20T00:00:00.000000000', '2020-01-21T00:00:00.000000000',\n",
      " '2020-01-22T00:00:00.000000000', '2020-01-23T00:00:00.000000000',\n",
      " '2020-01-24T00:00:00.000000000', '2020-01-25T00:00:00.000000000',\n",
      " '2020-01-26T00:00:00.000000000', '2020-01-27T00:00:00.000000000',\n",
      " '2020-01-28T00:00:00.000000000', '2020-01-29T00:00:00.000000000',\n",
      " '2020-01-30T00:00:00.000000000', '2020-01-31T00:00:00.000000000',\n",
      " '2020-02-01T00:00:00.000000000', '2020-02-02T00:00:00.000000000',\n",
      " '2020-02-03T00:00:00.000000000', '2020-02-04T00:00:00.000000000',\n",
      " '2020-02-05T00:00:00.000000000', '2020-02-06T00:00:00.000000000',\n",
      " '2020-02-07T00:00:00.000000000', '2020-02-08T00:00:00.000000000',\n",
      " '2020-02-09T00:00:00.000000000', '2020-02-10T00:00:00.000000000',\n",
      " '2020-02-11T00:00:00.000000000', '2020-02-12T00:00:00.000000000',\n",
      " '2020-02-13T00:00:00.000000000', '2020-02-14T00:00:00.000000000',\n",
      " '2020-02-15T00:00:00.000000000', '2020-02-16T00:00:00.000000000',\n",
      " '2020-02-17T00:00:00.000000000', '2020-02-18T00:00:00.000000000',\n",
      " '2020-02-19T00:00:00.000000000', '2020-02-20T00:00:00.000000000',\n",
      " '2020-02-21T00:00:00.000000000', '2020-02-22T00:00:00.000000000',\n",
      " '2020-02-23T00:00:00.000000000', '2020-02-24T00:00:00.000000000',\n",
      " '2020-02-25T00:00:00.000000000', '2020-02-26T00:00:00.000000000',\n",
      " '2020-02-27T00:00:00.000000000', '2020-02-28T00:00:00.000000000',\n",
      " '2020-02-29T00:00:00.000000000', '2020-03-01T00:00:00.000000000',\n",
      " '2020-03-02T00:00:00.000000000', '2020-03-03T00:00:00.000000000',\n",
      " '2020-03-04T00:00:00.000000000', '2020-03-05T00:00:00.000000000',\n",
      " '2020-03-06T00:00:00.000000000', '2020-03-07T00:00:00.000000000',\n",
      " '2020-03-08T00:00:00.000000000', '2020-03-09T00:00:00.000000000',\n",
      " '2020-03-10T00:00:00.000000000', '2020-03-11T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-13T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-15T00:00:00.000000000',\n",
      " '2020-03-16T00:00:00.000000000', '2020-03-17T00:00:00.000000000',\n",
      " '2020-03-18T00:00:00.000000000', '2020-03-19T00:00:00.000000000',\n",
      " '2020-03-20T00:00:00.000000000', '2020-03-21T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-23T00:00:00.000000000',\n",
      " '2020-03-24T00:00:00.000000000', '2020-03-25T00:00:00.000000000',\n",
      " '2020-03-26T00:00:00.000000000', '2020-03-27T00:00:00.000000000',\n",
      " '2020-03-28T00:00:00.000000000', '2020-03-29T00:00:00.000000000',\n",
      " '2020-03-30T00:00:00.000000000', '2020-03-31T00:00:00.000000000',\n",
      " '2020-04-01T00:00:00.000000000', '2020-04-02T00:00:00.000000000',\n",
      " '2020-04-03T00:00:00.000000000', '2020-04-04T00:00:00.000000000',\n",
      " '2020-04-05T00:00:00.000000000', '2020-04-06T00:00:00.000000000',\n",
      " '2020-04-07T00:00:00.000000000', '2020-04-08T00:00:00.000000000',\n",
      " '2020-04-09T00:00:00.000000000', '2020-04-10T00:00:00.000000000',\n",
      " '2020-04-11T00:00:00.000000000', '2020-04-12T00:00:00.000000000',\n",
      " '2020-04-13T00:00:00.000000000', '2020-04-14T00:00:00.000000000',\n",
      " '2020-04-15T00:00:00.000000000', '2020-04-16T00:00:00.000000000',\n",
      " '2020-04-17T00:00:00.000000000', '2020-04-18T00:00:00.000000000',\n",
      " '2020-04-19T00:00:00.000000000', '2020-04-20T00:00:00.000000000',\n",
      " '2020-04-21T00:00:00.000000000', '2020-04-22T00:00:00.000000000',\n",
      " '2020-04-23T00:00:00.000000000', '2020-04-24T00:00:00.000000000',\n",
      " '2020-04-25T00:00:00.000000000', '2020-04-26T00:00:00.000000000',\n",
      " '2020-04-27T00:00:00.000000000', '2020-04-28T00:00:00.000000000',\n",
      " '2020-04-29T00:00:00.000000000', '2020-04-30T00:00:00.000000000',\n",
      " '2020-05-01T00:00:00.000000000', '2020-05-02T00:00:00.000000000',\n",
      " '2020-05-03T00:00:00.000000000', '2020-05-04T00:00:00.000000000',\n",
      " '2020-05-05T00:00:00.000000000', '2020-05-06T00:00:00.000000000',\n",
      " '2020-05-07T00:00:00.000000000', '2020-05-08T00:00:00.000000000',\n",
      " '2020-05-09T00:00:00.000000000', '2020-05-10T00:00:00.000000000',\n",
      " '2020-05-11T00:00:00.000000000'], dtype='datetime64[ns]')




  • Data variables: (2)



    • cases

      (location, date)

      float64

      0.0 0.0 0.0 0.0 ... 35.0 36.0 36.0


      array([[   0.,    0.,    0., ..., 3778., 4033., 4402.],\n",
      
      " [ nan, nan, nan, ..., 850., 856., 868.],\n",
      " [ 0., 0., 0., ..., 5369., 5558., 5723.],\n",
      " ...,\n",
      " [ nan, nan, nan, ..., 34., 34., 51.],\n",
      " [ nan, nan, nan, ..., 167., 252., 267.],\n",
      " [ nan, nan, nan, ..., 35., 36., 36.]])



    • deaths

      (location, date)

      float64

      0.0 0.0 0.0 0.0 ... 4.0 4.0 4.0 4.0


      array([[  0.,   0.,   0., ..., 109., 115., 120.],\n",
      
      " [ nan, nan, nan, ..., 31., 31., 31.],\n",
      " [ 0., 0., 0., ..., 488., 494., 502.],\n",
      " ...,\n",
      " [ nan, nan, nan, ..., 7., 7., 8.],\n",
      " [ nan, nan, nan, ..., 4., 7., 7.],\n",
      " [ nan, nan, nan, ..., 4., 4., 4.]])




  • Attributes: (3)


    date :

    2020-05-11

    source_url :

    https://cowid.netlify.com/data/ecdc/full_data.csv

    source :

    ECDC (Our World in Data)





"
],
"text/plain": [
"\n",
"Dimensions: (date: 133, location: 210)\n",
"Coordinates:\n",
" * location (location) object 'Afghanistan' 'Albania' ... 'Zambia' 'Zimbabwe'\n",
" * date (date) datetime64[ns] 2019-12-31 2020-01-01 ... 2020-05-11\n",
"Data variables:\n",
" cases (location, date) float64 0.0 0.0 0.0 0.0 ... 34.0 35.0 36.0 36.0\n",
" deaths (location, date) float64 0.0 0.0 0.0 0.0 0.0 ... 4.0 4.0 4.0 4.0\n",
"Attributes:\n",
" date: 2020-05-11\n",
" source_url: https://cowid.netlify.com/data/ecdc/full_data.csv\n",
" source: ECDC (Our World in Data)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import coviddata.world\n",
"world_cases = coviddata.world.cases_owid()\n",
"world_cases"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can filter this data by country, and convert it to a [pandas](https://pandas.pydata.org/) dataframe, giving us easy access to pandas' plotting functions."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEhCAYAAACA4jApAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3deXQUVdrH8W9YskCASCAQNiFhXxSxZBdQuSKCiI6OKC4IioqizvjiNo4rKI7jjI4wDoyiKAq4saroVVkEVCgQZJOlSYCwhRDIRvbU+0eVQ0AC2au683zOySFdXVQ/3TS/vn3r1r1BlmUhhBAiMFRzuwAhhBDlR0JdCCECiIS6EEIEEAl1IYQIIBLqQggRQCTUhRAigNRwuwBR/gzDaAlsNk0z/LTtNwAPmKY5wDCMasCTwB+BYGeXGcArpmn+bpyrYRjNgElAbyAfSANeN01zVqF9FPA0EO1s2gc8Y5rmCsMwhgNTgBamaRYU+jvPAx2ACb/V7NQfB2x3djsBHAFeME1zZTGe+2fAi6ZpfuJsqw+8DvTAbsgsBh4xTTO/NM+zshmG0QaYA0QCu4ARpmkmnWG/AcDXwG7AAjKBeOx/g01lePzhQKJpmqudx5himmbn0h5PVCxpqVddDwJ9gR6mabYH+gMjgZtP39EwjFrAUmA90N7Z/1bgOcMwbnb2GYb9ofAX0zRbA22Al4C5hmFcAXwBhAD9Ch03yHnMd85QX4Zpmu2dn27OsT4zDGNgUU/IMIwtgAl0Oe2ufwLHgXbAhUBX4O7SPE+XjMF+Xq2AAuC6s+y7w3nNOgAXAx8Ayw3D6FSGxx+O/SEn/IC01KuuZsBRIBvANM3DhmGMBkLPsO944GfTNF//bYNpmtsNw7gNaOaE8yvAg6ZprnDut4CvDcN4HHjJNM3uhmHMAm4BljmH6ek83tdOPUUyTXOZYRivAg8D3xSxTycAwzCWnXaXAdzv1JRhGMZnwLXAf0ryPJ1j9wZeA+pjf0jNNE3zKcMwmgDvAjHYjaV5wATTNAucD6JJzt9JAUabpvmLYRjXAxOB6kAu8H+maS45w1PTwKtALNAc+O5sr1Wh2i3gU+fx7wMeMAwjFngD+wOiBvCUaZpzDcOo7bwelzr1+4AR2N+8rgOGGIbRCvgYCDYM432gO/a3vEdM0/zMMIyOwNvY3yiqAdNN0/xbcWoV5Uda6lXXG9ghEWcYxkzDMO4DjpimueoM+/bjDEFqmuZq0zQ/AhoAbYEzBdLnwCWGYYRhh96NhmGEOPeNBN4zTTOvmDWb2N8ASmoNcKdhGKGGYURidzk1PsN+53qeAJOBR51vI/2BJ5xAHAskOds7Y78ebZ0gnAQMNk2zDfY3pHmGYdQE/gE8bJpmO+zQHVVE/XuA2sBG4I+mafpK+PxNoI1hGDWA2cATTku+HzDRMIz2wO1AOvaH0vnY2XC9aZr3Y39Avez8Dva/wftO3Q8BLzvbHwWWmqbZFrura6hhGBElrFWUkbTUqyjTNPcAPZ3Q6QX0ASYZhvG0aZpTTts9Gwg6/RhOSIScvv0sj7nRMIw44CrDML7ADte+JSi7BnDc+VDYWGj7S6ZpzjzL3/s/7AD9BUgCvsUO5NOd9XmappkBXA70NwzjYezXrBoQhv1tY6xhGJ8AK4A/m6a50zCMcdgBv9owjN8OWQf7A3U28JZhGAuAldjdLKc/didgIXY30EjsrqDVwPmmaY4/y3MurAZ291Nb7O6nuYVqqQX0MU3zTSfc7wA6Yn8w1S7ieLtN0/za+X0TJ8+hLAD+YxhGc+f53Gya5vFi1ijKibTUA1MSEGYYRvhp2xtin3DEMIwphmF0NE0zzjTND51W2A3Yra3TbQSuOMP2+4C5zuPtAq46wz5DANM0zUzn9rvY4aSw+393lOB59QG2m6aZXai/vf05Ah3sEH3YNM22pmn2Bo5hn0A83Vmfp9O6Xg8MdP584LcdTNNcjd2l8S8gAvjeOcFYDfiycL3YHyg+0zSfAC4BlmO/TlvP8G92NzDXNM0fsFvF1YHnsD9EiqsP9knnathdbh0K1dILu4vmcWA6kIx9bmTxWY6XWej3/51UN01zHvaH1XvYLf6NhmFcUoI6RTmQUA9ApmmmA99jt7xDAAzDaArcj90dApAFvGQYxnnO/dWxT4btOsMh3wD6GYZxvzNqBsMwugBPAFOdvttHgX8ZhtHnt7/knCB9GfhLoWN9CAzCDsoZxXk+hmEEGYZxDXaf9+nfIorjTuCfhmFUd57vWOxW8unO+jyx+7PbYI/CWQEMcP5eNcMwJgN/xX7dX8DuiuqC3R8+2DCMzs7xemMHZr7zraWhM0rnAew+9/NOq+kA0MvpvrKAddit6w7netKGYVQzDGMM9gfG29jBnondGscwjIbY3yoigauBd03TXIDdqu/LyXywsD9MzvV4HwIjTdPUzmu2CWh/rr8nypeEeuC6GagLbDIMYzt2y24G8Fur9nHs1uZKwzC2AZuxW5o3nH4g0zSTsVuU/QGfc7wZwHjTNL909pmH3X0w2TCMnYZh7ASeAm4q9FUdZyjeN9jdGB+fpf7ahmH8ahjGr9gn7R4GrjVNc00pXotXsLtIdjjP8xPO0P9fjOcZjz20cIdhGCbQDfgB+2Tn687f3YUdnhHAm6ZpbgfuAmY7x3sVuMEZ1vkI8JHzHNcAz5umue+0sqZiD1HcCWzF/uAdCPzJMIwzjYJpW+h12wUMAwaYprnHNM1c7JOedzr/Psuw+9d9Tv1/NQxjE/YHwKfAg85w0JXA/xmGMfUcr/MLwB2GYexwXoN45ziiEgXJ1LtCCBE4pKUuhBABREJdCCECiIS6EEIEEAl1IYQIIBLqQggRQNy+olSG3gghRMn97srn30hLXQghAoiEuhBCBBAJdSGECCAS6kIIEUAk1IUQIoBIqAshRACRUBdCiAAioS6EEAHE7YuPhBBCnEFufgGHU7M4mJLFgeOZHErJ4mhGDknp2fzjj12L/HvlGupKqbbYixnUAaZprVeW5/GFECIQFBRYJGVkc/B4FgdTMtl/PIuDxzPtAE/J5MDxTJIzcmgYHkJ0RBjR9UKJrhdKZHgIraNOX/HwVMUKdaVUEPbCt0O01iOc21MAwznGM1rrxdjLhB3FXvrqTMuieV5OTg6TJ08mPj6enJwcbrnlFlJSUvjyyy8BiIyM5NVXX2XFihW89957BAUF0aBBAyZOnEhKSgqTJ08mJSWFGjVq8MILL3DixAkmTpwIQF5eHpMmTSI6OvpsJQgh/JxlWSSl5+A7ko7vSDr7j2X+r8V9MCWLQ6lZ1AmpQXREKE3qhdHECe4Lm0fQJCKU6HphRNUJoUb1kveQnzPUlVKR2OssNsFe/grsNSZbAT2d7auVUl9ir1R+F1ATez3Jv5x+vJJq+fjn596phOInDynyvoULFxIWFsaMGTNIT0/ntddeo27durz77rsA3HDDDSQkJLBo0SJuvfVWLrvsMpYsWcLx48d5/fXXGTFiBIZh8OOPP/LGG2/Qrl072rVrx8MPP8zmzZs5fPiwhLoQASIrN5/4oxnEJ2WwO8n+c1diOr4jGQQFQeuG4cQ2DKfZeWH0ad2AJvVCaRIRRuN6oYTWPOeyr6VyzlDXWh8FuimlBgD3Opu72XdpC9ivlEoEWgCJ2C31EOzFccvsbAFcEXbu3EmvXr0ACA8P56mnnmLWrFm89tprBAUFkZ+fT0FBARMmTODDDz9k0aJF1KtXjx49erB9+3amTZvG9OnTsSyL6tWr88QTTzBnzhwef/xxAEaNGlWpz0cIUTZZufnsSz5B/NETxCdlEOeEeHxSBkczcmhevxYtI2sT07A2XZufxx+6NaN1VDiR4SGu1FvaPvVgILnQ7QzsIP8XMA3IAyaXrTR3tGzZko0bNzJgwABOnDjB4MGDadOmDW+99RbZ2dksW7YMgAULFjB69GgiIiJ46623+Oqrr4iJieG2226jc+fOJCQksHbtWpYvX07Xrl0ZNWoUP//8M++88w5///vf3X2SQogiJRw7wdJfE1m2/Qi/HkrjSHo2zSLCaNmgNi3q16J94zpc1akxrRrUpklEGNWrFTlhoitKG+q5QGih22FAttb6J2Bkmaty0XXXXcfEiRMZM2YMubm5PPbYY8ybN4977rmHqKgounTpwoIFC7jgggsYP348YWFhVKtWjWeffZb+/fszefJksrKyyM3N5ZFHHiE8PJznn3+eGjVqkJubyz333OP2UxSiSrMsi9TMPA6kZLI3+QS7j2Sw+0g6u5PsP6sFBdG/bUOGX9SUrs0jiK4XWqq+bbcEWVbxpjT/rfvFOVE6GBgHDAOigVVAG611XgkfX+ZTF0JUqKzcfHYcTmP9nmP8sPsoa+KSyc23aBoRRtPzwohpUJuYhuHENLS7UBqGhxAU5K3W9xkUWWBpW+pLgKHASpyToqUIdCGEKFd5+QX8sj+F9XuOsfVAKlsOpBJ/NINWDWpzYbMIBneO5rlhnWlcL/TcB/NTxW6pVxBpqQshSi2/wGLbwVR+8B1ltS8JM/4YTc8L45KW9enUpC6dmtSjTaPwChtp4qIiW+oS6kIIv2FZFjsOp/ODL4kfdh/lx93JNAgPpndsA3rFRtIzJpL6tYPdLrMySKgLIfyPZVn4jqTzw+5kfvQd5cfdR6kdUoNeMZH0bm2HeKO6gduVchYS6kII/3A4NYtl2xNZucsO8eDq1egVG0mvmEh6xkbSNCLM7RK9QEJdCOFN+QUWG/YdZ+mviSzdnkjCsUwubdOAfm0a0is2kub1y+U6xkAjoV5azz77LFdeeSW9e/cu1v5paWl8++23DB8+HNM0+fTTT3nppZcquEoh/M+B45nMWbuPuWv3EhEWzGXto7i8fRTdWkT41bhwl5T7kEZRhLS0NObPn8/w4cPdLkUIz7Esi5/iknlnVRw/xSVz7YVNeG90D9o1ruN2aQFDWuqnycrKYtKkSSQkJFC7dm1OnDjB6NGjWbVqFT6fjxMnTjBhwgQuvPBCZs+e/bvZG0ePHk1cXBwDBw5k8ODB/Otf/6Ju3bocO3aMvn37ct999zFt2jR++ukn8vLyGDBgAKNHj3b5WQtRsbJy81m08QAzVsWTnZfPnb1bcn23ZtQOkXZlKflxS/3ZehVwzJQi75o/fz4RERG88MILZGVlMWrUKBISEoiIiGD69OkcPXqUBx98kPfee48jR478bvbGF198kSeffJK//vWvmKZJRkYGb731FtWqVWPIkCGMHTuWefPmMXPmTBo0aMDs2bOxLMsfrmATosQSU7OY9eMePlyzj45N6vLYVe3o16Yh1Tw2X0og8YNQLzqAK0JcXBw9e/YEIDQ0lK5duzJ79mzCwsJYt24dAJmZmaSkpFC/fv3fzd54ujZt2hAcbI+bDQ4OJi8vj7/97W9MmzaN5ORk2rZtS0FBAdWrB9zFEaIK23Ighbe+j+PbbYcZ1rUJc8b2POfiDqJ8eD/UK1lMTAxr165lwIAB5OTksGHDBkaOHMmJEycYNWoU2dnZzJw5k8TERFasWMH06dNPmb0R7H7D35zeAs/NzWXp0qU89dRTBAUFMW7cOHw+H23btq2spyhEhbAsi+93JjF9xW52JqYxqncrnr2mE/Vq1XS7tCpFQv00w4cPZ9KkSYwePZqwsDBCQkKIiopi+fLljB07lhMnTnDjjTfSokULLMv63eyNd999N8eOHeO5555jyJDfzwVfs2ZNQkJCGDVqFCEhITRq1IiYmBgXnqkQ5cOyLBZuPMCby3xYFtzdL4ZhFzYhuIaMYHGDnCgVQpRawrETPP7pJlKzcvmzakv/tg3l/FDl8OMTpUIIzykosPhwzV7+oXdw96Ux3H1pKxlb7hES6kKIEtmXfILHPv2FEzn5zB3bkzaNZIy5l0ioCyGKbf7P+3l+8Vbu6RfDXZfGeG4pNyGhLoQohqzcfJ5duIU1ccnMGtODjk3qul2SKIKEuhDirHYlpvPAh+tp26gOC8f3JVyuAvU0+dcRQhTpt+6WCYPaMeKS5jKyxQ9IqAshficzx+5uWbsnmQ/u6kGHaOlu8RcyBkkIcYpdiekMn7qKrLx8Fj7QVwLdz0hLXQjxP/N+TuCFxdt4dFA7bpLuFr8koS6EkO6WACLdL0JUcbsS0xg+dRXZ0t0SEKSlLkQVtnDjAZ5duIXHrmrHHw3pbgkE5RrqSqnrgeuBJOBfWuvd5Xl8IUT5+eCnPUz5bpd0twSYYoW6UioIuBUYorUe4dyeAhjOMZ7RWi8GugHHsLt1DlZMyUKIspqxMo63V8YxZ2xPzo+s7XY5ohydM9SVUpGABpoAy5zNg4BWQE9n+2ql1JfAJ8Bm5/5bgLfLv2QhRFnMXB3PzB/i+ejeXjSNCHO7HFHOznmiVGt9VGvdDRhRaHM3+y5taa33A4lAC6Cz1joPOALI1G1CeMz8n/fzn+U+Zo3pIYEeoErbpx4MJBe6nQGEACilpjv3P1a20oQQ5Wnp9kQmfr6VD+7qSfP6tdwuR1SQ0oZ6LhBa6HYYkK21ngXMKnNVQohy9euhVB75aCP/vd2gXWP5Eu13LAty0iE7DXIyoEGbInctbaivB8YppV4HooEoYF8pjyWEqEDJGTnc/Z7J00M7cvH557ldjihKXjYk7YTEbXB0J6Tsh9QESD1g/44FIXUhJBzGryvyMKUN9SXAUGAlUBMY7/SlCyE8JDe/gPs/WM/VnaMZflFTt8sRANnpdlAnbYfDWyFxqx3kx/dAxPkQ1cFuiTe/BOpeB/WaQt2mEFq8Yaey8LQQAezpBZvZm3yCt++4RFYpqizpR+DwZkj2QepBSDsIqftP/l6QB3WioUFbO8CjOp4M8hohxX0UWXhaiKpm9pq9rNyVxPz7+0igV5TUA7BnNRz4GQ5vsX/yc6BxF4iMtVvYLXpB3Wio0wTqNoHQelCBV+5KS12IALQ2Ppl731/Hx/f2IqZhuNvl+L/8XDjqO9lVkrjVbo1npdqh3exiaNQFGnWyg7vip1so8gEk1IUIMJv3pzDqnbX8/cYLGNAuyu1y/E9upt3y3vcTHNpkh3jybrvVXbi7pFEniGwD1VyZF1FCXYiqYN2eY9zzvsmk67owqFNjt8vxPsuyw3vTJ3DkV0hJgLRDdmg37wFNujr93W2hpqcu1pJQFyLQ/bz3GHfNNPnHTV3p37ah2+V4k2XBke2QsAb2r4Pdy6B6CFzwR2hmQN1mUK8Z1Aw956FcJqEuRCDLys3n6te/Z8KgdgzuEu12Od6Smwn71oDvW9i2yO4fP783NOkG5/eCxhdURh94eZPRL0IEsn9+s4MOTepKoIN9EU/CWohbYf8c/AUadYSYAXDDOxB9oT+GeLFJqAvh5zbuO86n6/az5OFL3S7FPTkZsPZtuzWeYNp94DH9od8EaNETgqvO9MLS/SKEH8vJK+CaN1Yy7rJYru1aBa8YtSzY8hl8/TQ07w5dbrS7VsIi3K6sokn3ixCBaOrSXTSvH8awC5u4XUrlykqFTR/DunfBKoDrp0PLPm5X5QkS6kL4qW0HU5n14x4+f/DSqrW26O7l8PEoaNkXBj4DMZdBtepuV+UZEupC+KG8/AImfLKRx65qT+N6nh9+V352fAXzx8FN79uhLn5HQl0IPzRjVRzn1QrmRqOZ26VUjoJ8+Pl9+G4i3DzHnsFQnJGEuhB+5khaNm8u8/Hpfb0Dv9vFsuzW+bfPQXA43DYfGnd2uypPk1AXws+8+vV2/tCtWWBP1JWSABtmw4ZZdphf/hS0uzqgx5eXFwl1IfzI5v0pfLMtkW8f6e92KeUvPxe2LoCfZ8HBDdDperhhhn3lp4R5sUmoC+EnLMvi+UVb+ZNqQ72wmm6XU34K8uGXj2D5ZHvuFeNOuHm21ybQ8hsS6kL4iS82HSI1K5cRl7Rwu5Tys38dLBhvL9U2bAq0qsJXxZYTCXUh/EBWbj4vfrGNV268IDBWMcrNhKUvwsY5MOhF6HKDdLGUEwl1IfzAW9/vpnPTuvSObeB2KWW3ZzUsHG8v+XbfagiXaYLLk4S6EB53ODWLt1bGsfB+P7/YJi8b9NP2ydCr/w4dhrpdUUCSUBfC4974bic3Gc1pEVnL7VJK7/he+OgOqNcUxv0AYee5XVHAcmVxPSFE8Rw/kcPCDQcYc2krt0spvd3L4b9XQOc/wB/fl0CvYOXeUldK1QZ+0lrLZV9ClNGctfsY2KERUXX8dH6XjXPh67/Yi1PIyJZKUaxQV0oFAbcCQ7TWI5zbUwDDOcYzWuvFzu4PAL9WRLFCVCW5+QW8tzqeabcZbpdScgUFsPIf9tS4dyyyF28WleKcoa6UigQ00ARY5mweBLQCejrbVyulvgSGASsA+RcUooy+2nKIZufVokuzem6XUjKpB2H+fZCTDmM01JUl9irTOfvUtdZHtdbdgBGFNnez79KW1no/kAi0AK4AbgK6K6XurIiChagqZqyMY3Tflm6XUTLbFsG0S6F5D7hziQS6C0rbpx4MJBe6nQGEaK0fAFBKvau1fqesxQlRVa3bk8yR9GxUx8Zul1I82enw1RP2SdGbPoAWPdyuqMoq7eiXXKDwmZswIPu3G1rrUWWoSYgq799LfdzTL9Y/rh49vhemD7An5Lp3pQS6y0rbUl8PjFNKvQ5EA1HAvnKrSogqbNvBVDbtT2HqyG5ul3JuSbvg/eHQcxz0Gud2NYLSh/oSYCiwEqgJjNda55VbVUJUYW8u8zG6bytCa3p83c3DW2DWH+CyJ6Hb7W5XIxxBlmW5+fiuPrgQXrPnaAbX/Xs1yycMoE6oh6fX3fsjzL0VrppsT8YlKluR/XIyTYAQHjJ16S5G9mjh7UDf8ZU9ZPH66dB6oNvViNPINAFCeMTWA6l89+sR7ro0xu1SirZxDix4AG75SALdo6SlLoQHWJbFpC+28tAVrb27qtEPU+GHf8OoxdCwndvViCJIqAvhAUu3J3I4NZubu3t0VaPvX7Vb6aOXQERzt6sRZyGhLoTLcvIKmPT5Np4a0pEa1T3YI7rja1jzXxi7DOr4ycVQVZiEuhAusiyLJz7bRNtGdRjQzoMrACXHwYJxcNMsCXQ/IaEuhIumLt3FjsNpzL2nJ0FeW6MzNxPm3gb9JkCLnm5XI4pJQl0IlyzaeIDZa/Yxb1xvagV78L+ifhoatIbuY92uRJSAB99JQgQ+35F0nlm4hVljehBV14MLYGxfYv/c+z147RuEOCsJdSEqWVZuPg98+DOPXNmWjk3qul3O76UdgkUPwo3vQliE29WIEvLgqXYhAtuLX2yjVYNa3OLF4YsF+fDZWOh2B5zf2+1qRClIS12ISrRixxG+3ZbIFw9d6r0TowBLXwQs6P+Y25WIUpJQF6KS5OQV8OzCLTx/bSdvXjW6fQlsnA1jl0N1iQZ/Jf9yQlSSd1bFcX5kLa7o0MjtUn5v70+w8AEY8SGEe3C8vCg2CXUhKsHh1Cz+s9zHZ+P6uF3KqQoK4Ic3YPUbMGwKNO/udkWijCTUhagELyzeys3dW9CqQW23SznJsmDePXAsDu5eKnO6BAgZ/SJEBftsfQK/Hkpj/OVt3C7lVOvehcRtcMdiCfQAIi11ISpQfFIGEz/fxqwxPQgL9tDydIm/wncvwJ1LoKYHL34SpSYtdSEqSE5eAQ/N+Znxl7f21kVGuVnwyWi44hlo2NbtakQ5k1AXooL885sd1K8dzKjeLd0u5VTLXoLIGFksOkBJ94sQFWD1riQ+W5/A5w967CKj/etgwwdw32qZ0yVASUtdiHKWnJHDnz/ayCs3XEiD8BC3yzkpL8deX3TQSxAe5XY1ooJIqAtRjizL4tFPNjKsaxP6tfXYRTwrXoGI86HLDW5XIipQuXa/KKX6A2OAcOBhrfXe8jy+EF73/o97OJSaxb9HXux2KafautDudrnrW+l2CXDFCnWlVBBwKzBEaz3CuT0FMJxjPKO1Xgx0BkYD1wBdAQl1UWVsP5TGP/UOPr2vN8E1PPQlOGEdLP4T3Pop1I12uxpRwc75zlNKRQLrgFcKbR4EtAJ6AsOAqUqp6lrrqc62PwG/lH+5QnhTVm4+42ev54mrOxDTMNztck46vg/m3ALXToEmXd2uRlSCc4a61vqo1robMKLQ5m72XdrSWu8HEoEWSqnrtdYrgdudHyGqhDe+20nrqHBuvLiZ26WcZFmw4H7ofhe0G+x2NaKSlLZPPRhILnQ7AwgB6iilpgG1gdfKWJsQfiE+KYMPf9rLlw/189bwRXMG5KRDnz+5XYmoRKUN9Vyg8LXFYUC21nomMLPMVQnhRyZ+vpWx/WJpXM9Dl9sf2wNLJ8GoL2Ru9CqmtP/a64FxSqnXgWggCthXblUJ4SeWbk/EdySDqSO7uV3KSZZlrzHaezxEtXe7GlHJShvqS4ChwEqgJjBea51XblUJ4Qdy8gp4ftFWnh7akZAaHpqsa8s8yEiCXuPdrkS4IMiyLDcf39UHF6Is/rPcx5q4ZGaMusTtUk7KyYAp3eH66dDSYwtyiPJU5MkbDw2mFcJ/HE7NYtpyH08P7eh2Kaf6/lU4v5cEehUmZ1CEKIXJX/7Kzd1b0NJLKxkd9YH5jj1Zl6iypKUuRAmtjU/mx91Huf+y1m6XclJOBnx0B1z2pFw1WsVJqAtRAimZufz5ow08N6wTtUM88kXXsuzZFxt3hkvucrsa4TKPvCuF8D7Lsnjys01c1i6KKzs1druck1a9Dsm7YfQSmaxLSEtdiOKas3YfviPpPHl1B7dLOSlplx3qIz6AmmFuVyM8QFrqQhTDjsNpvPLVdj66pxehNT00Jv2bZ6DPg1DPQ3POCFdJS12Ic8jKzeeBD9fz+OD2tI7y0AyM8avg4Eboca/blQgPkVAX4hxeWLyVDtF1vTUDY0EBfP0UXPG0dLuIU0j3ixBn8fWWQ6zclcTi8X29NQPjpo8BCzrL0nTiVBLqQhShoMDila+28/y1nakTWtPtck5KOwxf/wVungvV5Mu2OJW8I4QowtdbDxMWXJ1+bRq4XcpJlgWLHoJut0Mzj62DKjxBQl2IM7Asi6lLd3H/Za291e2ycQ4c3wv9H3O7EuFR0v0ixBms2JlEdl4+qkMjtxVG/ZQAABQeSURBVEs5KTfT7na5bR7UCHG7GuFR0lIX4gymfreLcQNaU62ah1rpu76FRp0g+kK3KxEeJqEuxGnWxCVzKDWLoRd4bGKsrQug47VuVyE8TkJdiNNMWbqL+wbEUqO6h/575GXDzq+g/TVuVyI8zkPvWiHc90vCcXYcSuP6bk3dLuVUvu+gUWeo46E+fuFJEupCFDJ16S7u7hfjrTVHQbpeRLFJqAvh2Hk4jXV7jnFz9+Zul3KqvBzY/iV0kK4XcW4ypFEI7KtHX/h8G6P7tqJWsEf+WyRug6xUe9Kuhu2gbhO3KxJ+wCPvXiHc9eZyHxnZedx9aYzbpdjiV8KckdCgrX2778Pu1iP8hoS6qPLWxCXzzqp4Fo3vQ00vjHj5bQbGIa9CF5mwS5SMB97BQrjnUEoWD835mVduvIDoeh6ZwnbLZ/afna53tw7hl8q1pa6U6gXcC4QBz2mtt5Tn8YUoT8kZOdz29k/c0bsll7WLcrscW142fPscDH9TZmAUpVKsUFdKBQG3AkO01iOc21MAwznGM1rrxcClwN1Ae2AwIKEuPCktK5dR76xhYMdG3Ns/1u1yTvrx3xDVCVr2dbsS4afO2RRQSkUC64BXCm0eBLQCegLDgKlKqepa678BtYEHgE/Kv1whyu5waha3vr2GLk3r8eigdm6Xc1LCOlg9Ba56ye1KhB87Z6hrrY9qrbsBIwpt7mbfpS2t9X4gEWihlOoE/AV4UmsdXxEFC1EW6/ce49opqxjYPoqJwzt7Z1rdzGPwySgY+k+o38rtaoQfK22nXTCQWeh2BhACPOv8+ZRS6vKylSZE+TLjk7lrpsnE4Z0Zf0Ub7wS6ZcH8+6HdEOg4zO1qhJ8r7YnSXCC00O0wIFtrfWPZSxKi/KVm5fLw3A28/IcLGNjRY/OnLJ0EGUfgxnfdrkQEgNKG+npgnFLqdSAaiAL2lVtVQpSzp+dvpn/bhiivBfr69+1FpMd8AzWC3a5GBIDShvoSYCiwEqgJjNda55VbVUKUk7SsXD42E9i0P4XF4y91u5xT+b6zhy/e+SWEN3S7GhEggizLcvPxXX1wEZjy8gv4dH0CH/y0l12J6VzQrB7PXNOJDtF13S7tpH1rYfZNcNMsOL+329UI/1PkCSGZJkD4vfwCix2H0ziSls3e5BPMWBlHwzohPDqoPZe0Os970+ge2gxzbobh/5FAF+VOWurCr5nxyTy9YAsncvJoel4YUXVCGX5RU/q1aeCd0S2FJe2Cd4fAVS9C5z+4XY3wX9JSF4Fh64FU/vv9bizL4nhmLtsPpfHk1R0YekG0N0O8sOP74P3hcPlfJNBFhZFQF37l5SW/0joqnM5N61K9WjWuaB9F7RA/eBunJ8J710LP+6Db7W5XIwKYH/xvEMK2KzGdLQdSmHbbxYTW9Fg/+dmkJMCsG6DLjdDrfrerEQFOpoETfuPd1XHc0r2FfwX64a3w9iDoegsMeNztakQVIKEu/ELKiVwWbjjArT3Pd7uU4ju8BWZeAwOfhT4Pgtf7/EVAkFAXfmHO2r1c0aERUXVDz72zFxTkw4IH4Iqn4QKZPUNUHulTF56Sl1/ALf/9iZTM3FO27z+eyYd393CpqlJY+xbUDJOToqLSSagLT9l2MI2kjGz+PbLbKdtrB9egef1aLlVVQin7YfnLcOcS6XIRlU5CXXjK2vhkerSKpH1jD13SX1yWBXt/tOdzueRuaNjW7YpEFSShLjxl3Z5jXNHBI+uFFlfGUdg4G9a/B1Y+XDwKut/jdlWiipJQF55hWRbmnmQeu6q926UUT34ufP5n2LIA2l1lr1p0fm/pchGuklAXnpFwLJMCC5rXD3O7lHOzLPj8EUg9CA9tgFr13a5ICEBCXXjIuj3HMM4/z/tzuAD8MAUSTBjzFYTUcbsaIf5HQl14xtr4ZC4+/zy3yzi3bYvhh6kwRkugC8+Ri4+EZ6zbcwyjpce7MQ5sgEUPwogPIKK529UI8TsS6sITUjJz2Zt8gk5NPDyUMWU/zLkFhr4GTS92uxohzkhCXXjCz3uP0aVpPWpW9+hbMivFXn6u+1joOMztaoQokvSpC1elZ+fx9ZZDvLMqnsvbe3R8em4mzL4ZmveAPg+5XY0QZyXL2YlSyc0v4LtfE5mzZi9r449R2vdRvmXRJ7YB117UlEGdGnlvPdH8XJgzEkLrwXXToJpHv0mIqqbIIWIS6qJE9h49wVxzLx+bCbSoX4sR3VswsEMUNUrZbVKjWpB350fPTodP7wIsuGkWVK/pdkVC/EZCXZTckbRs3v9xDx+b+0jPygOgZo1qDO/alBHdm9O2UQAP50vZb/ehN77QvlK0RrDbFQlRWOWFulLKAMYCB7TWz55jdwn1SrR5fwpvLvfhS0w/576WBQdTMhl6YRPu6NWS6Ah7HvOwmtW9ezKzPORmwYYPYMUr9knRvn+Sy/6FF5U91JVSQcCtwBCt9Qjn9hTAwD7h+ozWerGzb0tglIR65Tuans0b3+0iO6/glO0Jx06w83A6d/eLoVdMZLFyqkm9MOrVqkJdDlvmwZInoHEX6DcBmnd3uyIhilLk/+BijX5RSkUCGmgCLHM2DwJaAT2d7auVUl9qrfPLVKook79/vZ3UzDx6t448ZXvv2Eiu9OKJSK/Y8RV88SjcPAeayRh04b+KFepa66NAN6XUAOBeZ3M3+y5tAfuVUolACyCuIgoV57b1QCp662G+fWQA9cKqUAu7rPathfn3wc1zJdCF3ytL52gwkFnodgYQUrZyRGlZlsXEz7fy0BVtJNBLIiPJvkp0+JvQ/BK3qxGizMpy8VEuUHgV4DAgG0BrHQ88W4ZjixL6ZlsiR9Kyubl7C7dL8S9r34Z2g6HtILcrEaJclCXU1wPjlFKvA9FAFLCvXKoSJbJk8yGemr+J1266qNTjxauk3Cx7geg7FrldiRDlpiyhvgQYCqwEagLjtdZ55VKVKJbsvHwmfb6NpdsT+e/tBhe18INpa71k00cQfSFE+clKS0IUg1x85KeSM3K4532T+rWD+dsNF0o/eklZFvy7Jwx+GWIGuF2NECVVtiGNwlt2JaYzZuZaru4SzYQr21GtmlwcU2K+b6FaDWjV3+1KhChXEup+ZuuBVG6fsYZHB7Xjj5fIIg2ltmE2XDJGrhYVAUfOqvmRbQdTueOdNTw3rJMEelklbpOFLkRAkpa6h/x3xW4S07LOeJ9lwYKNB3jmmo4MuSC6kisLMPl5kOyDyDZuVyJEuZNQ94iUE7n885sdPDyw6KB5/aau9G7doBKrClDH4qBOYwiu5XYlQpQ7CXWP2HIghY7RdRnbL9btUgLfkV+hoQxjFIFJ+tQ9YvOBFDo3red2GVXDkV+hYTu3qxCiQkioe8Sm/akS6pXlyHZpqYuAJaHuEZv3p9BFQr1ySEtdBDAJdQ9Iy8rlUEoWsQ1ru11K4CvIh6Rd0EBCXQQmCXUP2HIglfbRdWQyrspwLB5qN4SQcLcrEaJCSIp4wOb9KXRuIl0vleLIdul6EQFNQt0DpD+9Ekl/ughwEuoesPmAjHypNDLyRQQ4CXWXZWTnsf9YJm0aSR9vpZALj0SAk1B32baDqbRtFE5NOUla8QoKIGkHNGzrdiVCVBiZJsAFefkF/N/HG0nLyuNgShZdW0S4XVLVcHwPhEZAqHR1icAloe6CTftT2JiQwl+u7gDABc0kZCrF3h+g+SVuVyFEhZJQd8Fq31EGtGvIwI6N3C6latm9XFY6EgFPOnJdsGpXEn1iZQrdSmVZELdC1iMVAU9CvZJl5eazYd9xesTUd7uUquXoLgiqBvVj3K5EiAoloV7J1u85RrvGdagTWtPtUqqW3csgpr+sSSoCnoR6JVvlS6J3bKTbZVQ9ccuhVT+3qxCiwpXriVKllAJGA8HAg1rr/eV5/ECwatdRHh0kl6lXqoJ8iF8Jg19xuxIhKlyxQl0pFQTcCgzRWo9wbk8BDOcYz2itFwOjgNuBi4Ebgdcqomh/lZqVy87DaXQ7/zy3S6laDv1iz8xYVxbsFoHvnN0vSqlIYB1QuJkzCGgF9ASGAVOVUtWBPK11LnAYkCtqTrNmdzJdW0QQWrO626VULXErZCijqDLO2VLXWh8FuimlBgD3Opu72XdpC9ivlEoEWgDVlFI1gEggpWJK9q5DKVkM+PtScvOtM95fYFn/u+BIVKJ9a6DTdW5XIUSlKG2fejCQXOh2BhACfADMdH7/U9lK8z/p2Xk0qRfG138q+oScLIThgvxcCJYJ00TVUNpQzwVCC90OA7K11kuAJWWuyp8FSXALIdxT2lBfD4xTSr0ORANRwL5yq0oIIUSplDbUlwBDgZVATWC81jqv3KoSQghRKsUOda31MmCZ87sF3F8xJQkhhCgt6fwVQogAIqEuhBABREJdCCECiIS6EEIEEFdDXSl1DxAEBBX+vTg/SqlhJdm/Mo7TOio86LtHBlRqPWd63bz42rh6nJEfBakHXr3HE7V4+DhnOkZJ/1967TlV5Gtzln2LfM3K8TmNpQhut9THFvF7cVxTTjX4+3HO9Lr5+3OqiOP89jp5oRavHudMxyjp/8uijlMaXjpOSY5xttesvJ6TZ0O9LBbJcSr0GIF6HC/V4rXjeKkWrx3HS7WcnWVZrv0MHDjQPNPv8lO611B+5HWS1839n8p4zc72GG631KcX8bsoPnndikdep9KR163kKuM1K/IxgizrzNPECiGE8D9ut9SFEEKUIwl1IYQIIOW68HRxKaWeBQ5prf/jxuP7G2fVqY+ArYU2v6K1/vy0/UYB7bXWj1dedd7gvEZLgX5a6+8LbZ8BXK61bulSaX5DKfUX7MVtmmutM92ux4v84X3mSqiLUvlOaz3C7SI8zgeMAb4HUErVwV4cXZyDUqoa8EdgFnAD8L67FXmap99nboZ6DaXU20AHIBz4RGv9vFJqGfADcBH24hs3aa13ulemNyml2gJvALWBI8Btzl3dlFIaqAesBv6stS5wp8pKtw5op5Sqq7VOBW4CPgbGKKUuAyYB+div2XXYi6ePx165a77WuiqP9FDAWuxRFdOA95VS8cDnQEfsJSrHa63XKaV2AN8CQVrre4s4XiAr6fvscWCl1voDpVQEsFxrfWFFFedmn3oBsF5r3Ru4Grin0H2/aq2vwm413OxGcR50uVJqmfOzGPgvcL/Wui/wJTDB2S8IGAz0xF4MfKgr1brDAuZi/ycD+4PuPef3i4AbtdaXYq/cdaWz/VLgjioe6GBfofie1norEKqU6uhsn6u1vgx7/YRpzrY2zvaqGOhQ8vfZm5xsdN1QaN8KUWktdWfOgx+11omFHruFUuoV7E+16oV2X+v8mYzdWhendb8opY4DbymlwF4IfBcQh90KyHP20UBXYGHll+uaD4BPlVIrsd8/h53t24EnlFJZ2KFkOtt/0FofqfwyvUMp1RgYCDRUShUAEdghn4fTxaC1/lkpFe1006Q6i+ZUZcV+n2mtf1FKhSqlooE/cDLgK0RlttRvB/o4vzfF/sqbobWeAMw4bd+q0l1QFpuB27XWA4CHgAXO9v5KqRpKqSBggLNfleEEdCLwd+DtQne9Azyitf4/IKHQdjkhCKOAl7XW/Zz3Uw/sVmgd7G8yKKU6A0ecrrwq/5qV4n02HXgUSNZaJ1VkbZUZ6pOxP8GWAZHY65xep5Ragt31kuC05kXxPAC867QUXgE2ONuDgG+ANcBRYL475blqBvbX4CWFtn0ErFJKzQP2A3e4UZjXOC3v0RTqEtBaJwOrgAbAbc577G1KN7lXICvJ++wT7K7kt6lgckWpEOKMnBOl7bXWWW7X4u+UUrWxh0L2cNZ4rjBy8ZEQQlQgpVQv7G8+kyo60EFa6kIIEVAqdPSLUiocuw+pCVAT+DOQC0zBHvFyEBjpbJsKdMEeD/uC1nqBUioW+8RDdSADGFnVRyoIIcTZVHT3yxhghzNmcyzwOvYFM+Od8ekHgLuwx1LXBvoCQ4A3nNEbk4ApWus+wFfAYxVcrxBC+LWKDvWtnByumIr9zSCGk+PQlwCXYLfYX3X6m9IK1dUN0KftK4QQoggV2v2itdYASqkW2HNJ/BV4q9DJggwgRGu9xtkvEngXu/vFUkoFc3JMbAZ214wQQogiVPjoF2fmwPew5yBZfNpjhgHZzn5XY1/5+IbW+rfLkXOB0NP3FUIIcWYVGupKqeuAK4CBWuvfulzilFIXO79fCZhKKQP7qkiltf660CHWO3//f/tWZL1CCOHvKnRIo1JqIfakUsedTXHAv7FPmOYCSdijX/6GHdqHnP0ytdaDndEvv12BlYOMfhFCiLOScepCCBFA5IpSIYQIIBLqQggRQCTUhRAigEioCyFEAJFQF0KIACKhLoQQAURCXQghAoiEuhBCBBAJdSGECCAS6qLKi42NfTc2NvaqIu4bEBsba1R2TUKUloS6EGc3AJBQF36jQudTF8KLYmNjw4DpQGvsxVvqADVjY2M/A6KACOA1IAEYBeTExsYmASuBN4FI7AnpRvp8vkO/ewAhXCQtdVEV3QUc9fl8vYDhQDhwETDX5/P1Be4F7vT5fEuwF235h8/n+wR4FfiXz+frB7zs/AjhKdJSF1VRR+BrAJ/PlxkbG7sS8AG9nf7zcOzFzk93EfBcbGzsM9gNorxKqleIYpOWuqiKtgCXx8bGBsXGxoZiL3j+V2CDz+ebAMw7bf+gQn9vgs/nGwDcCcyupHqFKDaZT11UOU6QTwfaAOlAXWAi8BKwB3th9JHOTwwwCXgMe+WtN4FaQDDwkM/nW1PZ9QtxNhLqQggRQKT7RQghAoiEuhBCBBAJdSGECCAS6kIIEUAk1IUQIoBIqAshRACRUBdCiAAioS6EEAHk/wGjNnpggWE5MwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib\n",
"matplotlib.rcParams['figure.figsize'] = [14, 6]\n",
"\n",
"(world_cases.sel(location=\"United States\")\n",
" .to_dataframe()\n",
" .plot(logy=True, title=\"US COVID-19 Cases & Deaths\"));"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Country-specific Data\n",
"\n",
"Some country-specific data sources are more reliable or complete.\n",
"\n",
"### UK Cases Data\n",
"\n",
"UK data can be fetched from [Public Health England](https://www.gov.uk/government/publications/covid-19-track-coronavirus-cases). Note that:\n",
"\n",
"* This data is broken down by constituent UK country whereas global data is usually combined.\n",
"* The cases data is a subset of total UK cases - [more info](https://coronavirus.data.gov.uk/about)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"Show/Hide data repr\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Show/Hide attributes\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
".xr-wrap {\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt, dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"

xarray.Dataset


  • Dimensions:


    • date: 92


    • location: 4




  • Coordinates: (3)



    • location

      (location)

      object

      'England' ... 'Wales'


      array(['England', 'Northern Ireland', 'Scotland', 'Wales'], dtype=object)



    • date

      (date)

      datetime64[ns]

      2020-01-30 ... 2020-05-10


      array(['2020-01-30T00:00:00.000000000', '2020-01-31T00:00:00.000000000',\n",
      
      " '2020-02-03T00:00:00.000000000', '2020-02-05T00:00:00.000000000',\n",
      " '2020-02-08T00:00:00.000000000', '2020-02-09T00:00:00.000000000',\n",
      " '2020-02-11T00:00:00.000000000', '2020-02-12T00:00:00.000000000',\n",
      " '2020-02-13T00:00:00.000000000', '2020-02-14T00:00:00.000000000',\n",
      " '2020-02-16T00:00:00.000000000', '2020-02-17T00:00:00.000000000',\n",
      " '2020-02-19T00:00:00.000000000', '2020-02-21T00:00:00.000000000',\n",
      " '2020-02-23T00:00:00.000000000', '2020-02-24T00:00:00.000000000',\n",
      " '2020-02-25T00:00:00.000000000', '2020-02-26T00:00:00.000000000',\n",
      " '2020-02-27T00:00:00.000000000', '2020-02-28T00:00:00.000000000',\n",
      " '2020-02-29T00:00:00.000000000', '2020-03-01T00:00:00.000000000',\n",
      " '2020-03-02T00:00:00.000000000', '2020-03-03T00:00:00.000000000',\n",
      " '2020-03-04T00:00:00.000000000', '2020-03-05T00:00:00.000000000',\n",
      " '2020-03-06T00:00:00.000000000', '2020-03-07T00:00:00.000000000',\n",
      " '2020-03-08T00:00:00.000000000', '2020-03-09T00:00:00.000000000',\n",
      " '2020-03-10T00:00:00.000000000', '2020-03-11T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-13T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-15T00:00:00.000000000',\n",
      " '2020-03-16T00:00:00.000000000', '2020-03-17T00:00:00.000000000',\n",
      " '2020-03-18T00:00:00.000000000', '2020-03-19T00:00:00.000000000',\n",
      " '2020-03-20T00:00:00.000000000', '2020-03-21T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-23T00:00:00.000000000',\n",
      " '2020-03-24T00:00:00.000000000', '2020-03-25T00:00:00.000000000',\n",
      " '2020-03-26T00:00:00.000000000', '2020-03-27T00:00:00.000000000',\n",
      " '2020-03-28T00:00:00.000000000', '2020-03-29T00:00:00.000000000',\n",
      " '2020-03-30T00:00:00.000000000', '2020-03-31T00:00:00.000000000',\n",
      " '2020-04-01T00:00:00.000000000', '2020-04-02T00:00:00.000000000',\n",
      " '2020-04-03T00:00:00.000000000', '2020-04-04T00:00:00.000000000',\n",
      " '2020-04-05T00:00:00.000000000', '2020-04-06T00:00:00.000000000',\n",
      " '2020-04-07T00:00:00.000000000', '2020-04-08T00:00:00.000000000',\n",
      " '2020-04-09T00:00:00.000000000', '2020-04-10T00:00:00.000000000',\n",
      " '2020-04-11T00:00:00.000000000', '2020-04-12T00:00:00.000000000',\n",
      " '2020-04-13T00:00:00.000000000', '2020-04-14T00:00:00.000000000',\n",
      " '2020-04-15T00:00:00.000000000', '2020-04-16T00:00:00.000000000',\n",
      " '2020-04-17T00:00:00.000000000', '2020-04-18T00:00:00.000000000',\n",
      " '2020-04-19T00:00:00.000000000', '2020-04-20T00:00:00.000000000',\n",
      " '2020-04-21T00:00:00.000000000', '2020-04-22T00:00:00.000000000',\n",
      " '2020-04-23T00:00:00.000000000', '2020-04-24T00:00:00.000000000',\n",
      " '2020-04-25T00:00:00.000000000', '2020-04-26T00:00:00.000000000',\n",
      " '2020-04-27T00:00:00.000000000', '2020-04-28T00:00:00.000000000',\n",
      " '2020-04-29T00:00:00.000000000', '2020-04-30T00:00:00.000000000',\n",
      " '2020-05-01T00:00:00.000000000', '2020-05-02T00:00:00.000000000',\n",
      " '2020-05-03T00:00:00.000000000', '2020-05-04T00:00:00.000000000',\n",
      " '2020-05-05T00:00:00.000000000', '2020-05-06T00:00:00.000000000',\n",
      " '2020-05-07T00:00:00.000000000', '2020-05-08T00:00:00.000000000',\n",
      " '2020-05-09T00:00:00.000000000', '2020-05-10T00:00:00.000000000'],\n",
      " dtype='datetime64[ns]')



    • gss_code

      (location, date)

      object

      'E92000001' ... 'W92000004'


      array([['E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001', 'E92000001', 'E92000001', 'E92000001',\n",
      " 'E92000001', 'E92000001'],\n",
      " [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002', 'N92000002', 'N92000002',\n",
      " 'N92000002', 'N92000002', 'N92000002'],\n",
      " [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003', 'S92000003', 'S92000003', 'S92000003', 'S92000003',\n",
      " 'S92000003'],\n",
      " [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004',\n",
      " 'W92000004', 'W92000004', 'W92000004', 'W92000004', 'W92000004']],\n",
      " dtype=object)




  • Data variables: (3)



    • cases

      (location, date)

      float64

      1.0 2.0 8.0 9.0 ... nan nan nan nan


      array([[1.00000e+00, 2.00000e+00, 8.00000e+00, 9.00000e+00, 1.20000e+01,\n",
      
      " 1.30000e+01, 1.40000e+01, 1.50000e+01, 1.60000e+01, 1.70000e+01,\n",
      " 1.80000e+01, 1.90000e+01, 2.00000e+01, 2.10000e+01, 2.50000e+01,\n",
      " 2.60000e+01, 3.00000e+01, 3.30000e+01, 3.90000e+01, 5.10000e+01,\n",
      " 5.50000e+01, 8.60000e+01, 1.25000e+02, 1.76000e+02, 2.25000e+02,\n",
      " 2.72000e+02, 3.45000e+02, 3.92000e+02, 4.42000e+02, 5.67000e+02,\n",
      " 7.92000e+02, 1.15700e+03, 1.57900e+03, 1.96900e+03, 2.28400e+03,\n",
      " 2.68100e+03, 3.22600e+03, 3.90500e+03, 4.81500e+03, 5.74600e+03,\n",
      " 6.82700e+03, 7.86100e+03, 9.06700e+03, 1.10790e+04, 1.30980e+04,\n",
      " 1.53600e+04, 1.79700e+04, 2.06230e+04, 2.30000e+04, 2.54360e+04,\n",
      " 2.89160e+04, 3.26570e+04, 3.67420e+04, 4.07500e+04, 4.47860e+04,\n",
      " 4.81030e+04, 5.11320e+04, 5.54660e+04, 5.99580e+04, 6.42160e+04,\n",
      " 6.82450e+04, 7.17740e+04, 7.47760e+04, 7.74650e+04, 8.07990e+04,\n",
      " 8.42400e+04, 8.78770e+04, 9.13220e+04, 9.47610e+04, 9.73380e+04,\n",
      " 9.94260e+04, 1.02509e+05, 1.05497e+05, 1.08273e+05, 1.11034e+05,\n",
      " 1.13815e+05, 1.15634e+05, 1.17032e+05, 1.19256e+05, 1.21554e+05,\n",
      " 1.23922e+05, 1.26044e+05, 1.27998e+05, 1.29260e+05, 1.30245e+05,\n",
      " 1.31871e+05, 1.33420e+05, 1.34620e+05, 1.35599e+05, 1.35936e+05,\n",
      " 1.35982e+05, nan],\n",
      " [ nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan],\n",
      " [ nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan],\n",
      " [ nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan]])



    • new_cases

      (location, date)

      float64

      0.0 0.0 0.0 0.0 ... nan nan nan nan


      array([[  0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,\n",
      
      " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
      " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
      " 0., 0., 2., 0., 2., 0., 0., 1., 0., 2., 0.,\n",
      " 0., 1., 7., 0., 5., 2., 8., 0., 9., 1., 6.,\n",
      " 0., 0., 0., 0., 6., 5., 4., 4., 0., 0., 1.,\n",
      " 13., 4., 4., 15., 11., 12., 4., 0., 5., 12., 4.,\n",
      " 4., 9., 13., 9., 12., 18., 0., 0., 0., 13., 63.,\n",
      " 452., 274., 46., nan],\n",
      " [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan],\n",
      " [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan],\n",
      " [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan]])



    • deaths

      (location, date)

      float64

      nan nan nan ... 1.099e+03 1.111e+03


      array([[       nan,        nan,        nan,        nan,        nan,\n",
      
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, 1.0000e+00, 2.0000e+00, 2.0000e+00, 3.0000e+00,\n",
      " 7.0000e+00, 7.0000e+00, 9.0000e+00, 1.0000e+01, 2.8000e+01,\n",
      " 4.2000e+01, 6.4000e+01, 7.9000e+01, 1.1200e+02, 1.5400e+02,\n",
      " 1.8600e+02, 2.4000e+02, 2.6400e+02, 3.3100e+02, 4.7400e+02,\n",
      " 6.5100e+02, 8.2000e+02, 1.0920e+03, 1.3710e+03, 1.5660e+03,\n",
      " 1.9190e+03, 2.2870e+03, 2.9000e+03, 3.5030e+03, 4.1580e+03,\n",
      " 4.8470e+03, 5.4250e+03, 5.9570e+03, 6.9670e+03, 7.8910e+03,\n",
      " 8.8780e+03, 9.9160e+03, 1.0661e+04, 1.1267e+04, 1.1961e+04,\n",
      " 1.2971e+04, 1.3703e+04, 1.4610e+04, 1.5436e+04, 1.6447e+04,\n",
      " 1.6831e+04, 1.7370e+04, 1.8492e+04, 1.9231e+04, 1.9834e+04,\n",
      " 2.0658e+04, 2.1399e+04, 2.1742e+04, 2.2049e+04, 2.2918e+04,\n",
      " 2.3550e+04, 2.4110e+04, 2.4763e+04, 2.5282e+04, 2.5528e+04,\n",
      " 2.5785e+04, 2.6441e+04, 2.7008e+04, 2.7432e+04, 2.7967e+04,\n",
      " 2.8250e+04, 2.8467e+04],\n",
      " [ nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " 1.0000e+00, 1.0000e+00, 2.0000e+00, 2.0000e+00, 3.0000e+00,\n",
      " 5.0000e+00, 7.0000e+00, 1.0000e+01, 1.3000e+01, 1.5000e+01,\n",
      " 2.1000e+01, 2.2000e+01, 2.8000e+01, 3.0000e+01, 3.6000e+01,\n",
      " 4.8000e+01, 5.6000e+01, 6.3000e+01, 7.0000e+01, 7.3000e+01,\n",
      " 7.8000e+01, 8.2000e+01, 9.2000e+01, 1.0700e+02, 1.1800e+02,\n",
      " 1.2400e+02, 1.3400e+02, 1.4000e+02, 1.5800e+02, 1.7600e+02,\n",
      " 1.9300e+02, 1.9400e+02, 2.0700e+02, 2.2000e+02, 2.5000e+02,\n",
      " 2.6300e+02, 2.7800e+02, 2.9400e+02, 2.9900e+02, 3.0900e+02,\n",
      " 3.2900e+02, 3.3800e+02, 3.4700e+02, 3.6500e+02, 3.7600e+02,\n",
      " 3.8100e+02, 3.8700e+02, 4.0400e+02, 4.1800e+02, 4.2200e+02,\n",
      " 4.2700e+02, 4.3000e+02],\n",
      " [ nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " 1.0000e+00, 1.0000e+00, 1.0000e+00, 2.0000e+00, 3.0000e+00,\n",
      " 6.0000e+00, 6.0000e+00, 7.0000e+00, 1.0000e+01, 1.4000e+01,\n",
      " 1.6000e+01, 2.2000e+01, 2.5000e+01, 3.3000e+01, 4.0000e+01,\n",
      " 4.1000e+01, 4.7000e+01, 6.9000e+01, 9.7000e+01, 1.2600e+02,\n",
      " 1.7200e+02, 2.1800e+02, 2.2000e+02, 2.2200e+02, 2.9600e+02,\n",
      " 3.6600e+02, 4.4700e+02, 4.9500e+02, 5.4200e+02, 5.6600e+02,\n",
      " 5.7500e+02, 6.1500e+02, 6.9900e+02, 7.7900e+02, 8.3700e+02,\n",
      " 8.9300e+02, 9.0300e+02, 9.1500e+02, 9.8500e+02, 1.0620e+03,\n",
      " 1.1200e+03, 1.1840e+03, 1.2310e+03, 1.2490e+03, 1.2620e+03,\n",
      " 1.3320e+03, 1.4150e+03, 1.4750e+03, 1.5150e+03, 1.5590e+03,\n",
      " 1.5710e+03, 1.5760e+03, 1.6200e+03, 1.7030e+03, 1.7620e+03,\n",
      " 1.8110e+03, 1.8470e+03],\n",
      " [ nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, 1.0000e+00, 1.0000e+00, 1.0000e+00,\n",
      " 1.0000e+00, 3.0000e+00, 1.2000e+01, 1.6000e+01, 1.7000e+01,\n",
      " 2.2000e+01, 2.8000e+01, 3.4000e+01, 3.8000e+01, 4.8000e+01,\n",
      " 6.2000e+01, 6.9000e+01, 9.8000e+01, 1.1700e+02, 1.4100e+02,\n",
      " 1.5400e+02, 1.6600e+02, 1.9300e+02, 2.1200e+02, 2.4500e+02,\n",
      " 2.8600e+02, 3.1500e+02, 3.5100e+02, 3.6900e+02, 3.8400e+02,\n",
      " 4.0300e+02, 4.6300e+02, 4.9500e+02, 5.0600e+02, 5.3400e+02,\n",
      " 5.7500e+02, 5.8400e+02, 6.0900e+02, 6.2400e+02, 6.4100e+02,\n",
      " 7.5100e+02, 7.7400e+02, 7.8800e+02, 7.9600e+02, 8.1300e+02,\n",
      " 8.8600e+02, 9.0800e+02, 9.2500e+02, 9.6900e+02, 9.8300e+02,\n",
      " 9.9700e+02, 1.0230e+03, 1.0440e+03, 1.0620e+03, 1.0900e+03,\n",
      " 1.0990e+03, 1.1110e+03]])




  • Attributes: (3)


    date :

    2020-05-10

    source :

    Public Health England

    source_url :

    https://c19downloads.azureedge.net/downloads/data/countries_latest.json





"
],
"text/plain": [
"\n",
"Dimensions: (date: 92, location: 4)\n",
"Coordinates:\n",
" * location (location) object 'England' 'Northern Ireland' 'Scotland' 'Wales'\n",
" * date (date) datetime64[ns] 2020-01-30 2020-01-31 ... 2020-05-10\n",
" gss_code (location, date) object 'E92000001' 'E92000001' ... 'W92000004'\n",
"Data variables:\n",
" cases (location, date) float64 1.0 2.0 8.0 9.0 12.0 ... nan nan nan nan\n",
" new_cases (location, date) float64 0.0 0.0 0.0 0.0 0.0 ... nan nan nan nan\n",
" deaths (location, date) float64 nan nan nan ... 1.099e+03 1.111e+03\n",
"Attributes:\n",
" date: 2020-05-10\n",
" source: Public Health England\n",
" source_url: https://c19downloads.azureedge.net/downloads/data/countries_..."
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import coviddata.uk\n",
"uk_cases = coviddata.uk.cases_phe()\n",
"uk_cases"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### US Data\n",
"\n",
"US data from the [Covid Tracking Project](https://covidtracking.com/):"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"Show/Hide data repr\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Show/Hide attributes\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
".xr-wrap {\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt, dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"

xarray.Dataset


  • Dimensions:


    • date: 110


    • location: 1




  • Coordinates: (2)



    • location

      (location)

      <U13

      'United States'


      array(['United States'], dtype='<U13')



    • date

      (date)

      datetime64[ns]

      2020-01-22 ... 2020-05-10


      array(['2020-01-22T00:00:00.000000000', '2020-01-23T00:00:00.000000000',\n",
      
      " '2020-01-24T00:00:00.000000000', '2020-01-25T00:00:00.000000000',\n",
      " '2020-01-26T00:00:00.000000000', '2020-01-27T00:00:00.000000000',\n",
      " '2020-01-28T00:00:00.000000000', '2020-01-29T00:00:00.000000000',\n",
      " '2020-01-30T00:00:00.000000000', '2020-01-31T00:00:00.000000000',\n",
      " '2020-02-01T00:00:00.000000000', '2020-02-02T00:00:00.000000000',\n",
      " '2020-02-03T00:00:00.000000000', '2020-02-04T00:00:00.000000000',\n",
      " '2020-02-05T00:00:00.000000000', '2020-02-06T00:00:00.000000000',\n",
      " '2020-02-07T00:00:00.000000000', '2020-02-08T00:00:00.000000000',\n",
      " '2020-02-09T00:00:00.000000000', '2020-02-10T00:00:00.000000000',\n",
      " '2020-02-11T00:00:00.000000000', '2020-02-12T00:00:00.000000000',\n",
      " '2020-02-13T00:00:00.000000000', '2020-02-14T00:00:00.000000000',\n",
      " '2020-02-15T00:00:00.000000000', '2020-02-16T00:00:00.000000000',\n",
      " '2020-02-17T00:00:00.000000000', '2020-02-18T00:00:00.000000000',\n",
      " '2020-02-19T00:00:00.000000000', '2020-02-20T00:00:00.000000000',\n",
      " '2020-02-21T00:00:00.000000000', '2020-02-22T00:00:00.000000000',\n",
      " '2020-02-23T00:00:00.000000000', '2020-02-24T00:00:00.000000000',\n",
      " '2020-02-25T00:00:00.000000000', '2020-02-26T00:00:00.000000000',\n",
      " '2020-02-27T00:00:00.000000000', '2020-02-28T00:00:00.000000000',\n",
      " '2020-02-29T00:00:00.000000000', '2020-03-01T00:00:00.000000000',\n",
      " '2020-03-02T00:00:00.000000000', '2020-03-03T00:00:00.000000000',\n",
      " '2020-03-04T00:00:00.000000000', '2020-03-05T00:00:00.000000000',\n",
      " '2020-03-06T00:00:00.000000000', '2020-03-07T00:00:00.000000000',\n",
      " '2020-03-08T00:00:00.000000000', '2020-03-09T00:00:00.000000000',\n",
      " '2020-03-10T00:00:00.000000000', '2020-03-11T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-13T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-15T00:00:00.000000000',\n",
      " '2020-03-16T00:00:00.000000000', '2020-03-17T00:00:00.000000000',\n",
      " '2020-03-18T00:00:00.000000000', '2020-03-19T00:00:00.000000000',\n",
      " '2020-03-20T00:00:00.000000000', '2020-03-21T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-23T00:00:00.000000000',\n",
      " '2020-03-24T00:00:00.000000000', '2020-03-25T00:00:00.000000000',\n",
      " '2020-03-26T00:00:00.000000000', '2020-03-27T00:00:00.000000000',\n",
      " '2020-03-28T00:00:00.000000000', '2020-03-29T00:00:00.000000000',\n",
      " '2020-03-30T00:00:00.000000000', '2020-03-31T00:00:00.000000000',\n",
      " '2020-04-01T00:00:00.000000000', '2020-04-02T00:00:00.000000000',\n",
      " '2020-04-03T00:00:00.000000000', '2020-04-04T00:00:00.000000000',\n",
      " '2020-04-05T00:00:00.000000000', '2020-04-06T00:00:00.000000000',\n",
      " '2020-04-07T00:00:00.000000000', '2020-04-08T00:00:00.000000000',\n",
      " '2020-04-09T00:00:00.000000000', '2020-04-10T00:00:00.000000000',\n",
      " '2020-04-11T00:00:00.000000000', '2020-04-12T00:00:00.000000000',\n",
      " '2020-04-13T00:00:00.000000000', '2020-04-14T00:00:00.000000000',\n",
      " '2020-04-15T00:00:00.000000000', '2020-04-16T00:00:00.000000000',\n",
      " '2020-04-17T00:00:00.000000000', '2020-04-18T00:00:00.000000000',\n",
      " '2020-04-19T00:00:00.000000000', '2020-04-20T00:00:00.000000000',\n",
      " '2020-04-21T00:00:00.000000000', '2020-04-22T00:00:00.000000000',\n",
      " '2020-04-23T00:00:00.000000000', '2020-04-24T00:00:00.000000000',\n",
      " '2020-04-25T00:00:00.000000000', '2020-04-26T00:00:00.000000000',\n",
      " '2020-04-27T00:00:00.000000000', '2020-04-28T00:00:00.000000000',\n",
      " '2020-04-29T00:00:00.000000000', '2020-04-30T00:00:00.000000000',\n",
      " '2020-05-01T00:00:00.000000000', '2020-05-02T00:00:00.000000000',\n",
      " '2020-05-03T00:00:00.000000000', '2020-05-04T00:00:00.000000000',\n",
      " '2020-05-05T00:00:00.000000000', '2020-05-06T00:00:00.000000000',\n",
      " '2020-05-07T00:00:00.000000000', '2020-05-08T00:00:00.000000000',\n",
      " '2020-05-09T00:00:00.000000000', '2020-05-10T00:00:00.000000000'],\n",
      " dtype='datetime64[ns]')




  • Data variables: (3)



    • cases

      (location, date)

      int64

      1 1 1 1 ... 1275916 1301095 1322807


      array([[      1,       1,       1,       1,       1,       1,       1,\n",
      
      " 1, 1, 1, 1, 1, 1, 1,\n",
      " 1, 1, 2, 2, 2, 2, 2,\n",
      " 2, 2, 2, 2, 2, 2, 2,\n",
      " 2, 2, 2, 2, 2, 2, 2,\n",
      " 2, 2, 9, 18, 40, 53, 94,\n",
      " 207, 275, 387, 538, 721, 1013, 1280,\n",
      " 1672, 2142, 3004, 3741, 4842, 6131, 8254,\n",
      " 10865, 15063, 20834, 27367, 36334, 47013, 57179,\n",
      " 69473, 86789, 105462, 124815, 144297, 165521, 189998,\n",
      " 215177, 243235, 275234, 308752, 334718, 363465, 393874,\n",
      " 424045, 458260, 492848, 522750, 551906, 576875, 602795,\n",
      " 633112, 664129, 696010, 724047, 751646, 776830, 802772,\n",
      " 831374, 863123, 897319, 933310, 960343, 981134, 1006137,\n",
      " 1033157, 1062503, 1095681, 1125719, 1152006, 1173453, 1195605,\n",
      " 1220557, 1248137, 1275916, 1301095, 1322807]])



    • deaths

      (location, date)

      float64

      nan nan nan ... 7.329e+04 7.427e+04


      array([[       nan,        nan,        nan,        nan,        nan,\n",
      
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " nan, nan, nan, nan, nan,\n",
      " 2.0000e+00, 2.0000e+00, 4.0000e+00, 5.0000e+00, 8.0000e+00,\n",
      " 1.1000e+01, 1.4000e+01, 1.6000e+01, 2.0000e+01, 2.6000e+01,\n",
      " 2.7000e+01, 3.1000e+01, 3.5000e+01, 3.7000e+01, 4.3000e+01,\n",
      " 5.1000e+01, 5.5000e+01, 6.3000e+01, 7.7000e+01, 9.8000e+01,\n",
      " 1.2000e+02, 1.4500e+02, 1.8900e+02, 2.5300e+02, 3.0600e+02,\n",
      " 4.3700e+02, 5.2100e+02, 7.2500e+02, 9.5300e+02, 1.2310e+03,\n",
      " 1.6040e+03, 2.0380e+03, 2.5270e+03, 3.0600e+03, 3.8770e+03,\n",
      " 4.8230e+03, 5.9240e+03, 7.1120e+03, 8.4870e+03, 9.7140e+03,\n",
      " 1.0937e+04, 1.2841e+04, 1.4737e+04, 1.6659e+04, 1.8751e+04,\n",
      " 2.0686e+04, 2.2237e+04, 2.3754e+04, 2.6066e+04, 2.8628e+04,\n",
      " 3.0789e+04, 3.2854e+04, 3.4641e+04, 3.6300e+04, 3.7999e+04,\n",
      " 4.0554e+04, 4.2595e+04, 4.4409e+04, 4.6251e+04, 4.8069e+04,\n",
      " 4.9164e+04, 5.0354e+04, 5.2482e+04, 5.5182e+04, 5.7320e+04,\n",
      " 5.9059e+04, 6.0710e+04, 6.1868e+04, 6.2780e+04, 6.5307e+04,\n",
      " 6.7256e+04, 7.0002e+04, 7.1762e+04, 7.3291e+04, 7.4270e+04]])



    • tests

      (location, date)

      int64

      1 1 1 1 ... 8408788 8709630 8987524


      array([[      1,       1,       1,       1,       1,       1,       1,\n",
      
      " 1, 1, 1, 1, 1, 1, 1,\n",
      " 1, 1, 2, 2, 2, 2, 2,\n",
      " 2, 2, 2, 2, 2, 2, 2,\n",
      " 2, 2, 2, 2, 2, 2, 2,\n",
      " 2, 2, 9, 41, 121, 282, 527,\n",
      " 1597, 2188, 2983, 3753, 4624, 6420, 8832,\n",
      " 12580, 17717, 26773, 31273, 38948, 56611, 72185,\n",
      " 96858, 124258, 160413, 205167, 249769, 306904, 375517,\n",
      " 459004, 559468, 662538, 766904, 855684, 973134, 1084228,\n",
      " 1191810, 1309833, 1442065, 1670862, 1790521, 1941251, 2093996,\n",
      " 2238429, 2404262, 2562049, 2700617, 2842322, 2975315, 3125858,\n",
      " 3262564, 3424690, 3582859, 3725196, 3885586, 4033318, 4181428,\n",
      " 4496319, 4688701, 4920802, 5197717, 5404137, 5593495, 5796273,\n",
      " 6026170, 6255769, 6552602, 6805241, 7053366, 7285374, 7544328,\n",
      " 7786793, 8105513, 8408788, 8709630, 8987524]])




  • Attributes: (3)


    date :

    2020-05-10

    source :

    COVID Tracking Project

    source_url :

    http://covidtracking.com/api/us/daily.csv





"
],
"text/plain": [
"\n",
"Dimensions: (date: 110, location: 1)\n",
"Coordinates:\n",
" * location (location) \n",
"\n",
"\n",
"Show/Hide data repr\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Show/Hide attributes\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
".xr-wrap {\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt, dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"

xarray.Dataset


  • Dimensions:


    • date: 133


    • location: 210




  • Coordinates: (2)



    • date

      (date)

      datetime64[ns]

      2019-12-31 ... 2020-05-11


      array(['2019-12-31T00:00:00.000000000', '2020-01-01T00:00:00.000000000',\n",
      
      " '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000',\n",
      " '2020-01-04T00:00:00.000000000', '2020-01-05T00:00:00.000000000',\n",
      " '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000',\n",
      " '2020-01-08T00:00:00.000000000', '2020-01-09T00:00:00.000000000',\n",
      " '2020-01-10T00:00:00.000000000', '2020-01-11T00:00:00.000000000',\n",
      " '2020-01-12T00:00:00.000000000', '2020-01-13T00:00:00.000000000',\n",
      " '2020-01-14T00:00:00.000000000', '2020-01-15T00:00:00.000000000',\n",
      " '2020-01-16T00:00:00.000000000', '2020-01-17T00:00:00.000000000',\n",
      " '2020-01-18T00:00:00.000000000', '2020-01-19T00:00:00.000000000',\n",
      " '2020-01-20T00:00:00.000000000', '2020-01-21T00:00:00.000000000',\n",
      " '2020-01-22T00:00:00.000000000', '2020-01-23T00:00:00.000000000',\n",
      " '2020-01-24T00:00:00.000000000', '2020-01-25T00:00:00.000000000',\n",
      " '2020-01-26T00:00:00.000000000', '2020-01-27T00:00:00.000000000',\n",
      " '2020-01-28T00:00:00.000000000', '2020-01-29T00:00:00.000000000',\n",
      " '2020-01-30T00:00:00.000000000', '2020-01-31T00:00:00.000000000',\n",
      " '2020-02-01T00:00:00.000000000', '2020-02-02T00:00:00.000000000',\n",
      " '2020-02-03T00:00:00.000000000', '2020-02-04T00:00:00.000000000',\n",
      " '2020-02-05T00:00:00.000000000', '2020-02-06T00:00:00.000000000',\n",
      " '2020-02-07T00:00:00.000000000', '2020-02-08T00:00:00.000000000',\n",
      " '2020-02-09T00:00:00.000000000', '2020-02-10T00:00:00.000000000',\n",
      " '2020-02-11T00:00:00.000000000', '2020-02-12T00:00:00.000000000',\n",
      " '2020-02-13T00:00:00.000000000', '2020-02-14T00:00:00.000000000',\n",
      " '2020-02-15T00:00:00.000000000', '2020-02-16T00:00:00.000000000',\n",
      " '2020-02-17T00:00:00.000000000', '2020-02-18T00:00:00.000000000',\n",
      " '2020-02-19T00:00:00.000000000', '2020-02-20T00:00:00.000000000',\n",
      " '2020-02-21T00:00:00.000000000', '2020-02-22T00:00:00.000000000',\n",
      " '2020-02-23T00:00:00.000000000', '2020-02-24T00:00:00.000000000',\n",
      " '2020-02-25T00:00:00.000000000', '2020-02-26T00:00:00.000000000',\n",
      " '2020-02-27T00:00:00.000000000', '2020-02-28T00:00:00.000000000',\n",
      " '2020-02-29T00:00:00.000000000', '2020-03-01T00:00:00.000000000',\n",
      " '2020-03-02T00:00:00.000000000', '2020-03-03T00:00:00.000000000',\n",
      " '2020-03-04T00:00:00.000000000', '2020-03-05T00:00:00.000000000',\n",
      " '2020-03-06T00:00:00.000000000', '2020-03-07T00:00:00.000000000',\n",
      " '2020-03-08T00:00:00.000000000', '2020-03-09T00:00:00.000000000',\n",
      " '2020-03-10T00:00:00.000000000', '2020-03-11T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-13T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-15T00:00:00.000000000',\n",
      " '2020-03-16T00:00:00.000000000', '2020-03-17T00:00:00.000000000',\n",
      " '2020-03-18T00:00:00.000000000', '2020-03-19T00:00:00.000000000',\n",
      " '2020-03-20T00:00:00.000000000', '2020-03-21T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-23T00:00:00.000000000',\n",
      " '2020-03-24T00:00:00.000000000', '2020-03-25T00:00:00.000000000',\n",
      " '2020-03-26T00:00:00.000000000', '2020-03-27T00:00:00.000000000',\n",
      " '2020-03-28T00:00:00.000000000', '2020-03-29T00:00:00.000000000',\n",
      " '2020-03-30T00:00:00.000000000', '2020-03-31T00:00:00.000000000',\n",
      " '2020-04-01T00:00:00.000000000', '2020-04-02T00:00:00.000000000',\n",
      " '2020-04-03T00:00:00.000000000', '2020-04-04T00:00:00.000000000',\n",
      " '2020-04-05T00:00:00.000000000', '2020-04-06T00:00:00.000000000',\n",
      " '2020-04-07T00:00:00.000000000', '2020-04-08T00:00:00.000000000',\n",
      " '2020-04-09T00:00:00.000000000', '2020-04-10T00:00:00.000000000',\n",
      " '2020-04-11T00:00:00.000000000', '2020-04-12T00:00:00.000000000',\n",
      " '2020-04-13T00:00:00.000000000', '2020-04-14T00:00:00.000000000',\n",
      " '2020-04-15T00:00:00.000000000', '2020-04-16T00:00:00.000000000',\n",
      " '2020-04-17T00:00:00.000000000', '2020-04-18T00:00:00.000000000',\n",
      " '2020-04-19T00:00:00.000000000', '2020-04-20T00:00:00.000000000',\n",
      " '2020-04-21T00:00:00.000000000', '2020-04-22T00:00:00.000000000',\n",
      " '2020-04-23T00:00:00.000000000', '2020-04-24T00:00:00.000000000',\n",
      " '2020-04-25T00:00:00.000000000', '2020-04-26T00:00:00.000000000',\n",
      " '2020-04-27T00:00:00.000000000', '2020-04-28T00:00:00.000000000',\n",
      " '2020-04-29T00:00:00.000000000', '2020-04-30T00:00:00.000000000',\n",
      " '2020-05-01T00:00:00.000000000', '2020-05-02T00:00:00.000000000',\n",
      " '2020-05-03T00:00:00.000000000', '2020-05-04T00:00:00.000000000',\n",
      " '2020-05-05T00:00:00.000000000', '2020-05-06T00:00:00.000000000',\n",
      " '2020-05-07T00:00:00.000000000', '2020-05-08T00:00:00.000000000',\n",
      " '2020-05-09T00:00:00.000000000', '2020-05-10T00:00:00.000000000',\n",
      " '2020-05-11T00:00:00.000000000'], dtype='datetime64[ns]')



    • location

      (location)

      object

      'Afghanistan' ... 'Zimbabwe'


      array(['Afghanistan', 'Albania', 'Algeria', ..., 'Yemen', 'Zambia', 'Zimbabwe'],\n",
      
      " dtype=object)




  • Data variables: (3)



    • cases

      (location, date)

      float64

      0.0 0.0 0.0 0.0 ... 35.0 36.0 36.0


      array([[   0.,    0.,    0., ..., 3778., 4033., 4402.],\n",
      
      " [ nan, nan, nan, ..., 850., 856., 868.],\n",
      " [ 0., 0., 0., ..., 5369., 5558., 5723.],\n",
      " ...,\n",
      " [ nan, nan, nan, ..., 34., 34., 51.],\n",
      " [ nan, nan, nan, ..., 167., 252., 267.],\n",
      " [ nan, nan, nan, ..., 35., 36., 36.]])



    • deaths

      (location, date)

      float64

      0.0 0.0 0.0 0.0 ... 4.0 4.0 4.0 4.0


      array([[  0.,   0.,   0., ..., 109., 115., 120.],\n",
      
      " [ nan, nan, nan, ..., 31., 31., 31.],\n",
      " [ 0., 0., 0., ..., 488., 494., 502.],\n",
      " ...,\n",
      " [ nan, nan, nan, ..., 7., 7., 8.],\n",
      " [ nan, nan, nan, ..., 4., 7., 7.],\n",
      " [ nan, nan, nan, ..., 4., 4., 4.]])



    • tests

      (location, date)

      float64

      nan nan nan nan ... nan nan nan nan


      array([[nan, nan, nan, ..., nan, nan, nan],\n",
      
      " [nan, nan, nan, ..., nan, nan, nan],\n",
      " [nan, nan, nan, ..., nan, nan, nan],\n",
      " ...,\n",
      " [nan, nan, nan, ..., nan, nan, nan],\n",
      " [nan, nan, nan, ..., nan, nan, nan],\n",
      " [nan, nan, nan, ..., nan, nan, nan]])




  • Attributes: (3)


    source :

    ['ECDC (Our World in Data)', 'COVID Tracking Project']

    source_url :

    ['https://cowid.netlify.com/data/ecdc/full_data.csv', 'http://covidtracking.com/api/us/daily.csv']

    date :

    [datetime.date(2020, 5, 11), datetime.date(2020, 5, 10)]




"
],
"text/plain": [
"\n",
"Dimensions: (date: 133, location: 210)\n",
"Coordinates:\n",
" * date (date) datetime64[ns] 2019-12-31 2020-01-01 ... 2020-05-11\n",
" * location (location) object 'Afghanistan' 'Albania' ... 'Zambia' 'Zimbabwe'\n",
"Data variables:\n",
" cases (location, date) float64 0.0 0.0 0.0 0.0 ... 34.0 35.0 36.0 36.0\n",
" deaths (location, date) float64 0.0 0.0 0.0 0.0 0.0 ... 4.0 4.0 4.0 4.0\n",
" tests (location, date) float64 nan nan nan nan nan ... nan nan nan nan\n",
"Attributes:\n",
" source: ['ECDC (Our World in Data)', 'COVID Tracking Project']\n",
" source_url: ['https://cowid.netlify.com/data/ecdc/full_data.csv', 'http:...\n",
" date: [datetime.date(2020, 5, 11), datetime.date(2020, 5, 10)]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from coviddata import merge\n",
"\n",
"combined_cases = merge(world_cases, us_cases)\n",
"combined_cases"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEhCAYAAACA4jApAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3deXwU9f3H8VcC5IQkEAgkIFe45XZQQFRQBkXQ4lWpoEVsQa14tLW1tv68QFGrBc9K1QJq0YqCigJ+RUABOQZELrnCmQQIJOS+k/n98Z1oGoGEsJvZ7H6ej0ceyc5OZj672bz3u9/5zneCbNtGCCGEfwh2uwAhhBCeI6EuhBB+REJdCCH8iIS6EEL4EQl1IYTwIxLqQgjhRxq6XUCgMwxjKbDYsqwZzu0BwHrgOsuyFjrLrgWmWZbV6yy2uwJ42bKs+ae4bxEw37Ks2TXc1jLgPsuytp3ivm3APZZlrTiL2mKAJ4ERgA0UAW8BL1qWZTvrGM46XYAy4CTwtGVZCw3D6AusBeIsy8qutN2JwF2WZQ0wDMMGWliWdcL5OQkoBfKBPOBZy7I+rabOlsAc4EvLsv7uLAsDnnNqbwCscfaZV5vHWdcMw2gOzAc6AMeAWyzL2nuK9doD+4FdzqJ84DjwpGVZq85h/0OBCMuyPnf2sc2yrMa13Z74OWmpu+8LYGil21cDO4GRlZZdASyuw5r+h2VZV5wq0GvDMIxg4DOgAOhtWVY39GMdBzzkrGM46/wL6GRZVhfgbuAFwzB+bVnWZvRzdH2VzY8H/n2aXQ+0LKubZVn9gXuAGYZh3H6GOpcA24FhVe76C9AG6Al0RzeMHqnN43TJjeg3l/bAZuC0zwGQ5zxnFc/b08BHhmEMP4f9D0W/xoWXSEvdfUuBvxqGEWxZVjn6BX8f8C/DMIKcFt0VwD2GYSQALwK90C2/T4BHLMsqclqj44D/A+6vvAPDMH7lLA8FtgFNneVPAC0ty5psGEYokAn8zrKstwzD6AV8CHRFt9huBDYCDwB3olupq5xtVuxnODANaAZkARMty9pS5fHehH7d/bmitWpZVqoTsIOddaYB0y3L+qjilyzL2uis875hGO+gw/sWYLaz79bARcAN1T3hlmV9bxjGw+gwPuWbgGVZVznbnV3lLgP4wLKsEuf+94Bn+HlQV/s4DcPoCrwOtAVC0K+F3wBN0G9oA5xtrQImWZZVaBhGf+AfQCv0J5jfWZa13DCMS4CXgHDnd6ZZljX3FA/ta+BPQEegP/q1ViOWZa0wDON59OvrS8Mw4px99gQinLpeQjcWnwfGoF+nGejX5vXoN9SGhmG0cbYTZBjGC+g3vAj0J6hXnNf6bKfOYGAB8KDzPyLOQFrq7tuObs31cf5JmgIKyAG6O10A56E/5r8N7Aa6ocPlAuDBStsaDfSzLGtJxQLDMLoDrwBjLMvqCDyLDj+AD4CRhmEEAQOBveg3ENBvLh9U6SYwgSnApZZlJaI/PXRy9tMBHcYjLcvqDNwLLDAMo1GVx3spsKxq94NlWdsty/qXc3MI8PkpnquvgUigM/Af4BLDMFo59/0K+MSyrJOn+L1TsZztnK31wC2GYUQZhhEJ3IYO2Kpq8jgfAd5y/i49gJvRf9vr0X/zRHT3Uzkw2DCMaOAN4FbLsroC1wFzDMOIRXfzvOosHwXc7nxaqCoDSEN/0nnYsqzVZ/n4Kz9vs4E3LMs6H+iL/huY6IDuiP6U1QH9Gr/dsqyngJeBdyzLGuNsIwLYYVlWd+Aa4HnDMBoCk4ATlmV1Qr9pdHG+RDUk1F3m/NNXdMFcCXzuLPsM/c9xOfAlukU8DJhqWZZtWVYu8ALwi0qbe9ayrIIquzCBpZZl7XL2twrd8gPdas9DB8owdIvzQifkR6JDv7KrgPcsyzrq3H4fOOj8PBL9T7fGMIyd6L7jJuhgqqwICKr6PBiGEWwYRo37Vi3LOo5+U7nZWTTO2WdNNUR/MsEwjFWGYex0vh6u5veeRQfievSbzHr0G3BVNXmctwJJhmH8Dt3KDUe/aa1Bv1F8hv5k9A/Lsr4CLkY/x184z/HHQCN0i/sD4AnDMGY5691YtVXrvAGuAqaiP1k8bhjGOMMwznhsoYqGQKbzGEYALzm1rANaA4Mty1qEfvMfaxjGVPRrK/I02yvlp09LW9Gv8xic/wnDMOajP7383rKsnWdRZ8CSUPcNFaF+NfofGXRLdSQ/9af/LCDQH20rL089zTqnPCjnvHl84Ox3qFPHbnT3QEvg+zNtq0orNBh9wLeiD7YbcBn6AGVl3wNXOG8clY1CH/wEHWqn6ne9FH3Abo9zezYwzjCMHkAs8NWpHudpXIxzENCyrCGV6n6qmt9riu7a6GZZ1gXoTzcHTrFeTR7nYnSf9k7gUeCwU89udHg/hn6+FxiGcS/6Od5S5TkeAqy2LOsVdB//p+humx8Mw2hXZd9jgfVO6L6A7k6bhf6711TF8xbkfPWrVMuFwCuGYdzi1FGEfuOfc4btFVmWVeY87sqvrTXog7kvokP+G8Mwxpx6E6IyCXXf8CVwCTpMv3aWrUH3nV+FDstsYAXwF8MwgpyW0gPofvUKp+pvXApcZRjG+fDj6Johle7/AN0PHWFZVhqwDJgOLDzFCI1FwHinPxTDMK4DKoJDobtyejr3DXbWL6uyjXlAY2BaRdeMMwpiOvqjOcBfgYcMw7i2IhSdES9vAX+pCAF0KLZDh9/sSsvPyDCMQeiuon/UZP0qrgTeNQwj1BkJc5/zmKo64+N0uhhM4CnLspY5j6M1EGwYxt3Am4DljLqZC/QBvgW6GYZxubO9TuiWdwPDMFahDwZ/Cvwe/SmkbZWaUoH+hmE0dW5vQHd/dD/Fm8//cF5z16Bb4C9blpUDrAb+5NwXiW6InI9+zS60LOsD4BC6YVKRNTb6eMwZGYYxHd099Q26a2kJ+v9BVENC3Qc4XQn7gI2WZRU5y0qAlUC6ZVkpzqrj0f2Lu4FN6I+rz1Sz7d3AZOAD52Pyk+h/5grbgGh+6pL5Eh36VbtesCxrOXo433LDMHagW357nft2oT8mzzMMYxf6QNnPugAsyyp2tt8C2OWs+zG6Rfa6s8569PGBu4E9hmHsdu570LKstyptqwR4B31QcvaZngdgrdO9shfdSr3LsqwF1fzOqbyNbqnuQP/NdqH7uf9HdY/TsqxSdMB/bRjGRnSL/RN018jbQBiw1/m9S9GfDtLR/ejPOM/JB+j+9Rz0qJynnPW3OdtaU6WsD50atjr134F+Y7kCfQykqsiKbin0J677gV84fx/Q3UcD0J+cNgJvW3po67+Amw3D2I4+wLkEuN75RLUOuNEwjI/P+CzDTGfbe9HPcQzwWjW/I4AgmXpXCCH8h7TUhRDCj0ioCyGEH5FQF0IIPyKhLoQQfkRCXQgh/Ijbc7/I0BshhDh7pz2vQFrqQgjhRyTUhRDCj3i0+8U0zclAP/TpzsuUUjM8uX0hhBBnVqMzSk3TDEKfoj5KKTXWuf0yevrXhsCjSqlFzroN0KeI/1EpVVrNpqVPXQghzl7t+9RN04xFz+vwXKXFV6JnUBsIXAu84oQ56AsXfFKDQBdCCOFh1Ya6UipdKdUfPXlThf76LmUrpVLQk+5XzAg3HFju8UqFEEJUq7YHSkPQV+upkMdPlzWzlVLSrSKEEC6obaiXoKcGrRCOnhAfpdSEc6xJCCFELdV29Msm4G7TNGcC8UAczlVbhBBC1J5t26TnFZOaWUDKyQJSMvVXRl4x4Y0aEBHSkP+7psdpf7+2ob4EfRGDVehrJE6RA6NCCFG94tJyjmYVkpyZT2pmISknC0jNLCA1S4d4alYB4Y0a0LppOAnR4bRuGk7rmHB6tY6mqLScvKIzR63bF8nwub734uJipk+fzoEDByguLuaWW24hKyuLxYsXAxAbG8vzzz/P119/zdy5cwkKCqJ58+ZMnTqVrKwspk+fTlZWFg0bNuTJJ58kPz+fqVOnAlBaWsq0adOIj4938yEKIbyorNzmWHYhhzLyOVzxdbKAQxn5JJ/MJyOvmLgmYbSO0YGdEBNG65gIEmLCaNM0nISYcCJCqm1vn3ZIo9tzv1Sr/UOfVb/SWTowfdRp7/vkk08IDw/nrbfeIjc3lxkzZhAVFcXs2bMBuPHGG0lOTubTTz9l/PjxDBs2jCVLlpCZmcnMmTMZO3YshmGwdu1aXnrpJbp27UrXrl25//772bZtG8eOHZNQF6IeKy+3OZFbRHJmAckndes6+WS+E9q6q6RpRCPOaxpB22YRtGkWwcWdmjO2aThtmkXQskkoDRt472R+aalX8fTTTzNo0CCGDh3647J33nmHtLQ0goKCWLFiBTNnziQsLIz//Oc/HD58mOjoaO69914mT55MTEwMQUFB2LZNgwYNmDFjBu+99x7bt28HYMKECZx//vkuPTohRE3Ytk1qViG7j+Ww51gO+47nkeyEd2pWIVFhDX9sabeOCaeNE+DnNYugTdNwwhpVe23tc3XalrqEehXz5s0jLS2N++67j/z8fEaOHEnnzp154403KCoq4pe//CUzZ85k6dKl3HzzzcTExPDGG28QGRnJ5s2bufXWW+nZsyfJycls2LCBiIgIWrZsSd++ffnuu+949913+fvf/+72wxRCAFkFJRxMz2P/iTwOpudzID2Pfcfz2JuWS0RIA7q0bELnlo3pFNeYNk0jdJDHhBMe4vXQro6Eek0VFhYydepUjhw5QklJCWPHjmXBggUEBwcTFxeHbdu0aNGC3r1789ZbbxEeHk5wcDCPPfYY5eXlTJ8+ncLCQkpKSvjDH/5A48aNeeKJJ2jYsCElJSVMnjyZgQMHuv0whQgYtm2TklnAnmO57DqWw+6jOexPz+PAiTyKS8tpFxtJh+aRtIuNoH1sJB1aRNI5rjExESFul34mEupCCP9m2zbHc4vYfTSX3cdy2H0sh13HcthzTLe6u7ZqQpeWTejSsjEdWzSmXWwELRqHEhR02nz0ZRLqQgj/Yds2R7IK2ZKcxbaULLak6O/ltk2Xlk3o2rIJXVo531v6fKu7NiTUhRD1V1q2DvAtKVlsTc5ka0oWtg2920TTq00MvVpH06t1NC2j6m3L+2xJqAsh6ocTuUVsTc5ia0oWW5Kz2JqSSVFpOb1aR+sQbx1D7zbRxEeHBUqAn4qEuhDCNx3NKmT13hOs3nuCtfvSySkq/TG8K4K8TdPwQA7wU5FQF0L4hsKSMr7dl87KXcdZtfcEJ3KLGJwYy8WdmjOoYyztYyMJDpYAr4aEuhDCPamZBXy1M43lO9NYtz+D7vFNGNo1jks6N+f8hGgaSIifLQn12nrssccYMWIEgwcPrtH6OTk5LFu2jDFjxmBZFh9++CFPP/20l6sUwreUldt8d+gkX+1M46udaRzLLuSyLi0Y1i2Oy7q08MfRKHWt/s79Ut/k5OSwcOFCxowZ43YpQtSprPwSVuzWrfGVu4/TMiqMy7vFMXVMT/q1bSqt8ToiLfUqCgsLmTZtGsnJyURGRpKfn8/EiRNZvXo1SUlJ5Ofn8+CDD9KnTx/mzZv3s9kbJ06cyP79+xk+fDgjR47kxRdfJCoqipMnTzJkyBDuuusuXn/9ddatW0dpaSlDhw5l4sSJLj9qIWonv7iUz7YcYf7GZLanZnNRh2Zc3j2OYV3jSIgJd7s8f1aPW+qPRXthm1mnvWvhwoXExMTw5JNPUlhYyIQJE0hOTiYmJoZZs2aRnp7Ovffey9y5czl+/PjPZm986qmnePjhh3nkkUewLIu8vDzeeOMNgoODGTVqFJMmTWLBggXMmTOH5s2bM2/ePGzbliP7ol5JOp7LnDUH+HhzKka7pkwc0oHLurSoi4msRDXqQaifPoC9Yf/+/T/OzRIWFkbfvn2ZN28e4eHhbNy4EYCCggKysrJo1qwZM2bMICgoiLKyMsrLy3+2vc6dOxMSovsPQ0JCKC0t5dlnn+X1118nIyODLl26UF5eToMG8s8gfFt5uc3KPceZvfoA21Oz+NWFbVly/yXER0uL3Jf4fqjXsY4dO7JhwwaGDh1KcXExmzdvZty4ceTn5zNhwgSKioqYM2cOaWlpfP3118yaNYuioiJWrFjx4zYqd2lVbYGXlJSwfPly/va3vxEUFMTdd99NUlISXbp0qauHKMRZyS0q5cONycxZc4CwRg24/eL2vH7rBdIq91ES6lWMGTOGadOmMXHiRMLDwwkNDSUuLo6VK1cyadIk8vPzuemmm2jbti22bTN58mTi4uLo1asXH3/8Mb/97W85efIkjz/+OKNG/fxiHI0aNSI0NJQJEyYQGhpKy5Yt6dixowuPVIgzO5iex5w1B/nou2QGJ8Yy/YbeDGjfVLoKfZwcKBVC/Mi2bVbvTWf2mv1sOpTJL43zuHVQO1rLQU9fI+PUhRCnl19cyoLvUpi9+gDBQUFMuLg9Y/q29oWLQYhTk1AXQvxcSmYBc9cc4L/WYYz2zbh9cHsGJcZKF4vvq5tQN02zC3A/0AR4XSm1qppfkVAXwgX5xaW8tiKJt9ce5Ib+bfj1oPa0jY1wuyxRc+c2Tt00zSBgPDBKKTXWuf0yYDjbeFQptQiYBKQDDYC951q1EMKzbNvmk+9Tmb54JwPaN2PxfTIk0d9UG+qmacYCCkgAVjiLrwQ6AAOd5WtM01wM9AF+AzQCpgB/9XzJQoja2JaSxeOfbievqIyZY/txYYdmbpckvKDaUFdKpQP9TdMcCtzpLO6v71I2kGKaZhrQFkhDt9RDAfksJ4QPyMgr5u9f7OKL7cf4vdmFmwecJ/Ow+LHajlMPATIq3c5DB/mLwOtAKTD93EoTQpyLkrJy3ll7kJe+2ssv+iaw7PeXER3RyO2yhJfVNtRLgLBKt8OBIqXUOmDcOVclhKg127ZZtfcETy7aQVyTMN6bNJAuLZu4XZaoI7UN9U3A3aZpzgTigTjgsMeqEkLUyrdJ6fzjy92kZRfyl6u7M6JHSxmeGGBqG+pLgNHAKpyDokqpUo9VJYQ4K7uP5fDkoh0cysjn3ss784u+CTRsEOx2WcIFcvKREPVYRl4x/1C7+XzrEe65vBPjB7ajkYR5IJAzSoXwJ8Wl5cz99gCvrkji2j4J3HdFZ5pGyiXiAoiEuhD+wLZtlv2QxrTPf6BdbAR/G9WdTnFyENTvlZdBWQk0+nF8ioS6EPXdzqPZTF30A0ezC/nrqO4M6xrndknCE0oKIDsVsg5DVgpkp0BWsvM9BfLSoDALghpAdGto1Qt+ObceX85OiACXkVfMC2oXi7ce5d4rOnPLRW2l39zX2bYO4opgzj8BeScgP935OV3fl50CRbkQFQ9RbXRoR7WG+N7QbZT+uXFLCG8KQUGQngRHt5xx19JSF8JH2bbNoi1HePzTHYzuHc/9wzsTEyH95j6jOB9OHoCT+yFj/0/fK1rZANFtICoBIuMgIhYiY/X3iOY/BXlkCwg+6zdp6X4Roj7ZlpLFi8v2sO9EHs/d2Jt+bZu6XVLgsW3dus48+L+hXRHk+RkQ0xaadYBmHaFpB2jaHmLO0y3ssGjduvYOCXUhfF1hSRmffp/KO+sOcSKniPED23H7xe3lWqDelpcORzbrro2TB/73q2GIE9TtdHg37fDT96gECHbtbyOhLoSv2n8ij3fXHuTDTcn0OS+GWwe2Y2jXOJl0y9NsG3KOwJEtul/6yPf658JMiO8DzbvoAG/a7qcgD49xu+rTkVAXwpeUlpXz5Q9pvLvuIDtSs7nJOI9bLmwrF6rwBNvWo0lO7P7p6/guSPtB3x/fG1r1dr730V0nZ9+n7TYJdSF8QWpmAR9Yycxbf4jWTcO5dWA7RvZqRWhD6WKptfJySN0EexQkb4DU73S3SPOu0KKL/t68M8R1hybx3uznrksS6kK4pbCkjKXbjzJ/YzJbU7IY1Sue8QPb0T0+yu3S6q/iPEhaDrsXw+4v9JC/LiOg7SBI6K9Hlvg3CXUh6lJJWTkb9mewaOsRPt96hF6to7nJOI8RPVrKgc/asm1ItsB6C3YugoS+0GUkdL1Kd6EEFgl1Ibwtp7CElbuPo3YcY8Wu47SPjWDE+a24vn9ruQ5obZWX6e6UnZ/pIC8vhQtuh77j9JjvwCWhLoQnFZWWsedYLttSstiWmsW2lGz2puVyQbummD1aMrx7S1pFh1W/IfG/SgogZSMc/BYOrdEt86jW0HUkdBsNCf3q40FNb5BQF6K28otL+eFIDttTs3SIp2STdDyX9rGRnN86ip4J0fRsHc35CVFEhsrMG2ctPQl2LYY9X+gQj+sObQdCu8Fw3sBAb5GfjoS6ENUpK7dJzSxg7/Fc9h7L1SGemk3yyXw6xzWhZ+soeiRE0zMhim6toggPkb7xWivOhx0fw6a5kL5Hz3PS+UrocCmENna7uvpAQl0EttKyctJyijiSVcjRrEKOZBXo79mFHMnUPx/PLaJ541ASWzQmsUUk5ydEc37rKDrHNSGkoXzkP2e2rfvHN82F7QvgvAuh363Q5Sp95qY4GxLqwv+UldvkFpWSU1hCZn4Jx3OLOJ5dpL/nFHEsu/DHEE/PK6JZZAitosOJjwqjVXQY8dFhxMeEEx8dRquoMFpGhUl4e0NhNnw/T4d5cS70Gw99btEzEoraklAXvsO2bfKLy8gtKiW3qJQ853tuYSk5hTqkdViXkl1Y+mNwV9yX46yXX1xKZEhDmoQ1JDoihBZNQmnROJS4KP29RZNQEmLCaBUdTlyTUJmutq4VZsG612HdP6HDZXDBBGh/iRzo9AwJdVG3KvqnD6bncyA9j0MZ+Rw4kcfB9HwOZuQRRBCNwxrSOLQhkaENnHBuRJMwHdKNQ/XtxmENiXJuR4VX3K+/Nw5pSLDMj+JbysvhwDew5X09BLHr1XDpgxCb6HZl/kZCXXjP8ZwifjiSzc6j2ew8ksOOI9nsO5FHbGQI7WIjaB8bSbvYSNrHRtAuNpK2sRE0llEi/uX4Ltj8H9j6AUQ0g95jodeN0KSV25X5q7oJddM0rweuB04ALyql9lXzKxLq9dSRrAIWfpfKJ9+nkppZQPf4JnRrFUWP+Ci6xTehc1wTGR0SCLKSYdmTkPQV9Bmrv1qe73ZVgeDcLmdnmmYQMB4YpZQa69x+GTCcbTyqlFoE9AdOAsHAkXOtWvimY9mFXPPSKswerfi/0T24sEMzmSY20BRmw6p/wMZ/w4Dfwr2bIFQugO0Lqg110zRjAQUkACucxVcCHYCBzvI1pmkuBuYD25z7bwHe9HzJwk22bfOXj7Zyy4Vt+f2Irm6XI+paWSlsmg0rnoHOJty1Rl8sQviMag9DK6XSlVL9gbGVFvfXdylbKZUCpAFtgZ5KqVLgOCBv235o/sZkjmQVcs/lnd0uRdQl29Znfb42CHZ8AuM/hDGvSqD7oNoerQoBMirdzgNCAUzTnOXc/+dzK034ksKSMqwDJ3l68U7eueMiGc8dSFI3wxd/g7zjMGKabqH7x5zkfqm2oV4CVJ6tKBwoUkq9A7xzzlUJn3Ayr5hFW4/w6fepbEvJokvLJvxtVHd6JMg84AGh4iDovuUw9C/67M8GMmrJ19X2L7QJuNs0zZlAPBAHHPZYVcI1hSVlLPshjQXfpbBufzrDusYx+dKODEqMJSJE/qEDQmE2rJ6h5y0f8BuYslEOgtYjtf0vXQKMBlYBjYApTl+6qIfKy23W7k9n4XcpLN1+jN5tohnTtzUzxvaV8eSBpPJB0E7D4c7Vcip/PSQnHwUw27b58oc0nlmyk0YNgrmhf2uu6ZNAyyiZBzyglJfpGRNXPK1PFhoxFeL7uF2VODM5o1T8r40HTzJ98Q9kFZTw0MhuDOsaR5Ac/Aostg0/fAJfTdPdK0Mf0i10eR3UB+d28pHwHwdO5DF98U6+T87kAbMLN/RvIycOBaL0JPj8j5BzFK56ChKvkDD3E9JSDxC2bTN/YzJPL97Jby7pwMSLO8gFkANRWSmseRHWvARDHoCBd0GDRm5XJc6etNQDWX5xKQ9/tJXtqdnM++1AuraSkQwB6dh2WHg3hDeFSSugaTu3KxJeIKHu59Jzi7hjjkWH5pF8cs8QmWQrEJUWw6oXYP0sGP6YHm8uXS1+S0Ldjx1Kz+fX/17P1b1a8ccRXeVAaCBK/Q4W/g6i28Cdq+S0/gAgoe6ntiZnccecDUy5vBO3DmrvdjmirpUUwspn4Lu39an9vX8prfMAIaHuh1buPs4D72/mqet6cVVPuUhBwDmwCj69H+K66ROImrR0uyJRhyTU/cyHG5N5evEPzLr1Aoz2zdwuR9SlvHQ98db+lTDyGeh+jdsVCRdIqPsJ27Z5dUUS/1l3iPcmDaRTnIxwCRi2Dd+9A8seh143we/WyVwtAUxC3Q/Yts3jn+5g7b50Prp7sJzmH0jSdsKiB6C0AMbNh4S+blckXCahXs/Zts3/fbydrSlZ/PfOQUSFyYkkAaGkAL7+u76c3GUPwYA7IFiGqwoJ9XrNtm0e+2Q7W1KyePuOCyXQA8XRbfDhHdC8iz4QGhXvdkXCh0io11MVXS6bD2cy946LJNADQXk5bPiXHqo4Yhr0GSvDFMXPSKjXQ7Zt88SiHWw6dJK377iI6HAJdL938gB8MgWK8+EOBbGJblckfJRcaLIemr54J9aBk7w9UQLd75WVwLevwqxhelrcO76QQBdnJC31embOmgMs25nG/DsHER0hge63bBv2fAFL/woxbWHiUmjRxe2qRD0goV6PfLXzGC8v38tHdw0mJiLE7XKEtxzbrsM8KxmufAo6m9J3LmpMQr2e2Hk0mwc/2MKs2wzOaxbhdjnCG3KOwfJpsOtzuPRPYNwuc52LsyahXg9kF5Zw1zub+Nvo7lzQrqnb5QhPK8qBdf+Eb1+BvuPgng16znMhakFC3cfZts2fPtjCxZ1iua5fG7fLEZ6UnQprX9MzKSZeDr/9Cpp1dLsqUc95fPSLaZqRpmlu8/R2A9Wbq/aTmlXAI6N7uF2K8JSyUljzMrx2sR7dMmkl3PiWBLrwiBq11E3TDALGA6OUUmOd2y8DhrONR5VSi5zV7wF2eqPYQLMtJYvXViSx8HcXE9pQTgGv9woydb2ffXgAABhzSURBVH/52lchvBn85ksZnig8rtpQN00zFlBAArDCWXwl0AEY6CxfY5rmYuBa4GuguzeKDSSFJWXc//5mHhndQw6M1me2rafCXTcLDnwD7S/RB0G7XyMjWoRXVBvqSql0oL9pmkOBO53F/fVdygZSTNNMA9oCVwClwIWmad6ulPq3d8r2f9MX76Rbqyb8oq9cfqxeykuHbfNh42ywy+GiO+G6f0JYlNuVCT9X2wOlIUBGpdt5QKhS6h4A0zRnS6DX3tp96SzdfpTF910i1xWtTwqzYPdS2L5QX32oywi46mnocJm0ykWdqW2olwCVJ+0OB4oqbiilJpxDTQHvX1/v44HhXeQEo/ogP0P3k+/4GA6thXYXQ49rpVUuXFPbUN8E3G2a5kwgHogDDnusqgCWmlnAxkMnefmW/m6XIk4nNw1++BR++ARSNkHHodD7ZrjhTQly4brahvoSYDSwCmgETFFKlXqsqgD23obDXNsngfAQGe3iE8rLITsF0vfAsR26VX5sG3QeAcYdMHYehMiBbOE7gmzbdnP/ru7c15SWlTPkmeXMnjiAbq2kxVdnyssh95ieayVjnw7wE3sgPQkykiAsGmI76YtSdB4BicOgYajbVYvAdtqDNHJGqQ9Zvus4CTFhEuieVpSrAzsrGbIOV/rZuZ1zRJ+WH90GmraH2M56yGFsog5zuYizqEck1H3If9Yd5FcXtnW7jPqjpBDyjv/8KztVB3bmYR3aZcU6sH/8Og86XvbT7ajW0vIWfkNC3UdsPpzJ9tRsXh13gdul+J7CLNi3Ao7vhpP7IWO//p6fDpEtILI5RMb99HOzRD2MsCLAI5rJkEIRMKRP3QeUl9tc9+pqbh3UnhsvkEm7KCmEI99D8gZIWgaHN0DbgdDyfGjWAZp20N+jWkOwHFAWAUn61H3Z/E3JBAcHcX2/1m6X4o6yUjiyGfYth30r9TDB5p2gzQDofxv8cq70awtRQxLqLssuLOG5pbt44zaD4OAA6iLIOwG7FsPuJXpOlKg2erz34CnQbrCEuBC1JKHustdWJDGsawv6nBfjdinel56kx3nv/EyP+U4cBt2vhdH/gMZxblcnhF+QUHdRVn4J89YfYtGUIW6X4h22Danf6RDf9blunXe7Gi75g56tsFFY9dsQQpwVCXUXzfn2AFd0a0mbpn52RuLRrbBxjg7yRuHQbTRcMxNaGxDs8euyCCEqkVB3SV5RKXPWHOC/dw5yuxTPqJg3fNUMOL4TjIlw60Jo0cXtyoQIKBLqLpm3/hADO8aS2KKx26Wcm7JSOLQGlj+tT/wZ8gD0ugkaygyTQrhBQt0FhSVl/Oubfbz56wFul1I7uWnw7k26RV5WrE/2ufSPOsxl3LgQrpJQd8H8jcn0iI+iZ+tot0s5e/kZMHeMnhvl9sW6z1zO1hTCZ8hRqzpWUlbOP1cmcc/lndwu5ewVnIR3b9RDEYc+pKeclUAXwqdIqNexT79PpU3TcC5o18ztUmou5yioR+HFftB2EIyYKmEuhI+S7pc6VF5u8+qKJB69pofbpdRMcR6sngnrZ+n+8kkroWk7t6sSQpyBhHodWrr9KJEhDRjSqbnbpZyZbcP2j+CLR/REWpO/gZjz3K5KCFEDEup1pLSsnOfVbh6+uhtBvtx1cWIvfP4HffbnDW9COz8ZRy9EgJBQryPvW4eJaxLKsK4+OsdJSQF88wJseEMPT7xwMjSQl4cQ9Y3819aB3KJSZny5h39PGOCbrfQ9Cj7/I8T3hbtWQ1SC2xUJIWpJQr0OvL4yiUs6N/e9celZybDkITi2HUY9D52Gu12REOIceTTUTdO8DLgDaAzcr5Q65Mnt10fr9qXz9tqDfH7vJW6X8pOyElj7Gqz6B1w0Ga5/Q2ZMFMJP1CjUTdMMAsYDo5RSY53bLwOGs41HlVKLgJ7AROAaoC8Q0KH+0aZkpn32Ay/9qh8JMeFul6MdXg+f3gdN4uE3X0JsotsVCSE8qNqTj0zTjAU2As9VWnwl0AEYCFwLvGKaZgOl1CvOsgeALZ4vt/54c9V+XlC7mTdpIJd0buF2OVBaDMuegPfHw6UPwvgPJdCF8EPVhrpSKl0p1R8YW2lxf32XspVSKUAa0NY0zeuVUquA25yvgLTnWA6vLN/LfycPoktLH7gs28kD8KYJR7fBnaug5/VyRqgQfqq2feohQEal23lAKNDENM3XgUhgxjnWVi+Vl9s8vGAr9w/v7BtdLgdWwfyJekrci+6UMBfCz9U21EuAykfWwoEipdQcYM45V1WPvW8dprTcZtxFPnA6vfVvWD4Nrp8FiZe7XY0Qog7UNtQ3AXebpjkTiAfigMMeq6qeysgr5u9Ld/Huby+iQbCLLeKyUlj6MCR9Bbcvgeb1cEZIIUSt1DbUlwCjgVVAI2CKUqrUY1XVU/M3HmZo1zi6tYpyr4j8DJh/OwQ31KNbwmPcq0UIUeeCbNt2c/+u7tyTbNvmihdW8uwNvTHauzSt7vHdMO9m6Ho1mE/IVYiE8F+n7QqQM0o9ZMOBkwQHBXFBu6buFLBHwYI7wXwc+o13pwYhhOsk1D3kvfWHGDvgvLqf28W24dtXYM1LMPY/0Paiut2/EMKnSKh7QFZ+CeqHY/xtdB1f/KK0GBY9AEe+1/3nMue5EAFPQt0DPvoumcu6tKBZZEjd7bS0CP77az3u/I6lEBJZd/sWQvgsCfVzsPFgBrO+3sf6/Rm8NWFA3e24ItAbNIQb/w0NGtXdvoUQPk1Gv9TSxoMZTJq7kXuv6MyNF7QhMrSO3h/Ly+D9W3UL/abZEuhCBCYZ/eJp1oGTXNMngV8Pbl93O7VtWPxnKMmDWz6QQBdC/Ey1E3qJU9uSkkXvNnV80Yu1r+q5XH45FxrWYf+9EKLekFCvpW0pWfSqyysZ7Vqihy2O+y+E+dgVlIQQPkO6X2ohK7+EEzlFdGzRuG52mLEfPv4d/GoexLStm30KIeolaanXwrbULM5PiK6bSbtKCuG/t+kLW5x3off3J4So1yTUa2FrSlbdXETatuHzP0JsJ30tUSGEqIaEei1sTa6jg6SrXoDUzXDti3JxCyFEjUio10KdtNQ3zwNrNoz7AEJ94JJ4Qoh6QQ6UnqXM/GIy8orp2NyLp+XvWwnqEZjwGUTFe28/Qgi/Iy31s7QtJZseCVEEe+sgae5xWDAZrv8XtOjqnX0IIfyWhPpZ2pKSSW9vdb2Ul8PCu6DPWEgc5p19CCH8moT6Wfr+cCa9vHWQdN0/oSADhv3VO9sXQvg9CfWzsGTbEbYkZzGkU3PPbzwrGb5+Fm54U+Z0EULUmhworaHvD2fy8IJtzJ14IbGNQz2/gxXT4YLboVkHz29bCBEwJNSrYds2Gw6cZMq8TUy/vpd3hjIe3w27PocpGz2/bSFEQPFoqJumOQi4EwgHHldKbffk9svLbco9MP97ablNZn4JJ3KLKCgpA6DMWZaeV0R+kV6WX1zGoi2plNk2D1/dnRHntzrnfZ/S8qkweAqEu3TRaiGE36hRqJumGQSMB0YppcY6t18GDGcbjyqlFgGXAL8FugEjAY+FelFpGTe8toYdqdnnfHHn4CBoGhFCbONQIkIaEIQ+YTMmIoTYyBAiQxsSBDQIDuKJX/RkYMdm3rugdOp3cHg9jPmnd7YvhAgo1Ya6aZqxgAISgBXO4iuBDsBAZ/ka0zQXK6WeNU2zKXAP8JQnC31x2R4SosP59J4h3gvYulZeDp//CYY+BCERblcjhPAD1Y5+UUqlK6X6A2MrLe6v71K2UioFSAPamqZ5PvBX4GGl1AFPFbklOZP3Nxxm6nU9/SfQATbN1h8R+t3mdiVCCD9R2yGNIUBBpdt5QCjwmPP9b6ZpXn4uhaVlF7IlOZPvD2fy4AdbeGR0D+KahJ3LJn1LzjH4ahqMngHBMrJUCOEZtT1QWgJUTthwoEgpddO5lwTFpeWMemkVLaNCCSKIgR2bcW2fBE9s2ncs/Qv0vw1a9nC7EiGEH6ltqG8C7jZNcyYQD8QBhz1VlNpxjMQWkbw3aZCnNulbjm6Fg2vg2pfdrkQI4WdqG+pLgNHAKqARMEUpVeqpov6z/iC/utCPL9u27nUw7pCDo0IIjwuyPTDu+xz8bOcHTuRxw2trWPOXywlt2MCNmrwrPwNe7Av3bITGLdyuRghRP512xIjPHaF7b8Nhru/f2j8DHWDTHOg6SgJdCOEVPhXqxaXlzN+YzFh/7XopK4UNb8JFk9yuRAjhp1yd+2XY31f8z+3i0nK6tGxMYovG7hTkbbs+h6gESOjndiVCCD/lap/6vuO5P9t5fHQ44SF+2vXy5pVw0WToeb3blQgh6rfT9qm72lLv6K8t8lM5tA5yjkD3a92uRAjhx3yqT92vrXlRz8TYQGY7FkJ4j4R6XTixBw6thb7j3K5ECOHnJNTrwpqXYMBv5GQjIYTXSV+At3zzAmx5X/+ccwSmbHK3HiFEQJBQ95YfPoVLH4SW50N4M4j0wsWqhRCiCgl1bygrheM7ocuVENrE7WqEEAFE+tS9IX0vNGklgS6EqHMS6t5wdCu06uV2FUKIACSh7g1Ht0ioCyFcIaHuDce2QaveblchhAhAEuqeZttwRFrqQgh3SKh7Wu4xwIYm8W5XIoQIQBLqnnZ0K7TsCUGnnURNCCG8RkLd0+QgqRDCRRLqnnZ0qxwkFUK4RkLd02SMuhDCRR6fJsA0TQOYBKQqpR7z9PZ9WlEuZKVA885uVyKECFA1DnXTNIOA8cAopdRY5/bLgOFs51Gl1CKllGWa5glggjcK9mkpFrTqCQ0auV2JECJA1aj7xTTNWGAj8FylxVcCHYCBwLXAK6Zp+unFRWto7zJIvMLtKoQQAaxGoa6USldK9QfGVlrcX9+lbKVUCpAGtPVCjfXH3mXQabjbVQghAti5HCgNAQoq3c4DQs+tnHosOxVyUqF1f7crEUIEsHM5UFoChFW6HQ4UASilDgCPncO265+9y6DjMAgO7B4oIYS7ziXUNwF3m6Y5E4gH4oDDHqmqPtr7JXQe4XYVQogAdy7dL0uAQ8AqYCEwRSlV6pGq6puyUti3AjrJQVIhhLuCbNt2c/+u7txjDq2Dz/4Ad61yuxIhRGA47eRSco3S2iovg4OroawEtn0krXQhhE+QUK8t6y1Y8yI0S9QzMg68y+2KhBBCul9qpbQYXuoPN82GNobb1QghAs9pu19kQq/a2PI+xCZKoAshfI6E+tkqL4NV/4BL/uh2JUII8TMS6mdr+wKIbA7th7hdiRBC/IwcKK3q+/dhwaTT3x/cEMZ9IJerE0L4JDlQWtX746HbaOgztvp1hRDCHXKgtEbKSmD/1zJ9rhCi3pJQryx5AzTtAI1buF2JEELUioR6ZXu/lPnQhRD1moR6ZRLqQoh6TkK9Qm4anDwAbQa4XYkQQtSahHqFpK+gw2XQQEZ5CiHqLwn1CtL1IoTwA4HTLP32FfjikdPfH9wQhj9ed/UIIYQXBM7JR8uegAahcMkfTn1/UJBcX1QIUV/IRTIACA6WPnMhhF+TPnUhhPAjEupCCOFHJNSFEMKPeLSD2TRNE5gIhAD3KqVSPLl9IYQQZ1ajUDdNMwgYD4xSSo11br8MGM42HlVKLQImALcBFwA3ATO8UbQQQohTq7b7xTTNWGAj8FylxVcCHYCBwLXAK6ZpNgBKlVIlwDEgxvPlCiGEOJNqQ10pla6U6g9UvmpEf32Xsp0uljSgLRBsmmZDIBbI8kbBQgghTq+2B0pDgIJKt/OAUOBdYA7wEDC/uo2YpjkZPYg+qPLPNfkyTfPas1mfK/4viEsfPPfteKoeD23nVM9bfX9M3thOxfPkC7X46nZOtY2z/b/0tcfkzefmDOue9jnz4GM67TU3axvqJUBYpdvhQJFSaolSapxS6kal1OEabGfSaX6uiWvOcn1/3c6pnrf6/pi8sZ2K58kXavHV7ZxqG2f7f3m67dSGL23nbLZxpufMU4/ptPuo7eiXTcDdpmnOBOKBOKAmIe5Jn8p2vLoNf92OL9Xia9vxpVp8bTu+VMuZ2bZdo6/hw4cPHT58+HvOz0HDhw9/Zfjw4auHDx++fvjw4aNrup0q27RO9bN81e45lC95nuR5c/+rLp6zM+2jxi11pdQKYIXzsw38zgPvKbNO87OoOXneakaep9qR5+3s1cVzdtp9uD1LoxBCCA+SaQKEEMKPSKgLIYQfcWVycdM0HwOOKqX+6cb+6xvTNIcC/wV2VFr8nFLqsyrrTQC6KaUeqrvqfIPzHC0HLlVKfVNp+VvA5Uqp9i6VVm+YpvlX4AHgPKVUQXXrB6L68DqTK0bUH18ppcZWv1pASwLuAL4BME2zCXp+IlEN0zSDgV8C7wA3Am+7W5FP8+nXmZuh3tA0zTeB7kBjYL5S6gnTNFcA3wL90OPfb1ZK7XGvTN9kmmYX4CUgEjgO3Orc1d80TQVEA2uA3yulyt2pss5tBLqaphmllMoGbgY+AO4wTXMYMA0oQz9n16HnL5qCPnluoVIqkEd6mMAG9KiK14G3TdM8AHwG9ECfMT5FKbXRNM3dwDIgSCl1p0v1uulsX2cPAauUUu+aphkDrFRK9fFWcW72qZcDm5RSg4GrgcmV7tuplLoK3Wr4lRvF+aDLTdNc4XwtAv4F/E4pNQRYDDzorBcEjERPttYWGO1Kte6wgffR/2Sg3+jmOj/3A25SSl2CPnluhLP8EuDXAR7ooM9QnKuU2gGEmabZw1n+vlJqGHoI8+vOss7O8kAMdDj719lr/NTourHSul5RZy11Z86DtUqptEr7bmua5nPod7XKV33e4HzPQLfWRZXuF9M0M4E39BT2hAB7gf3oVkCps44C+gKf1H25rnkX+NA0zVXo188xZ/ku4C+maRaiQ8lyln+rlDpe92X6DtM0WwHDgRamaZajZ1idBJTidDEopb4zTTPe6abJds5bCWQ1fp0ppbaYphlmmmY8cAM/BbxX1GVL/TbgYufn1uiPvHlKqQeBt6qsGyjdBediG3CbUmoocB/wsbP8MtM0Gzpz3g911gsYTkCnAX8H3qx017+BPyil/ggkV1ouBwT1dRCeUUpd6ryeLkK3QpugP8lgmmZP4LjTlRfwz1ktXmezgD8BGUqpE96srS5DfTr6HWwFemreJcB1pmkuQXe9JDuteVEz9wCznZbCc8BmZ3kQ8CWwHkgHFrpTnqveQn8MXlJp2X+B1aZpLgBSgF+7UZivcVreE6nUJaCUygBWA82BW53X2JvUbnIvf3Y2r7P56K7kN/EyOaNUCHFKzoHSbkqpQrdrqe9M04xED4W8yJlmxWvk5CMhhPAi0zQHoT/5TPN2oIO01IUQwq94dfSLaZqN0X1ICUAj4PfoC2y8jB7xcgQY5yx7BeiFHg/7pFLqY9M0E9EHHhqgr640LtBHKgghxJl4u/vlDmC3M2ZzEjATfcLMFGd8eirwG/RY6khgCDAKeMkZvTENeFkpdTGwFPizl+sVQoh6zduhvoOfhitmoz8ZdOSncehLgAHoFvvzTn9TTqW6+gOqyrpCCCFOw6vdL0opBWCaZlv0XBKPAG9UOliQB4QqpdY768UCs9HdL7ZpmpUvcF1xcWshhBCn4fXRL87MgXPRc5AsqrLPcKDIWe9q9JmPLymlKk5HrnyB6x/XFUIIcWpeDXXTNK8DrgCGK6Uqulz2m6Z5gfPzCMAyTdNAnxVpKqW+qLSJTc7v/7iuN+sVQoj6zqtDGk3T/AQ9qVSms2g/8Cr6gGkJcAI9+uVZdGgfddYrUEqNdEa/VJyBVYyMfhFCiDOScepCCOFH5IxSIYTwIxLqQgjhRyTUhRDCj0ioCyGEH5FQF0IIPyKhLoQQfkRCXQgh/IiEuhBC+BEJdSGE8CMS6iLgJSYmzk5MTLzqNPcNTUxMNOq6JiFqS0JdiDMbCkioi3rDq/OpC+GLEhMTw4FZQCf0xVuaAI0SExM/AuKAGGAGkAxMAIoTExNPAKuA14BY9IR045KSko7+bAdCuEha6iIQ/QZIT0pKGgSMARoD/YD3k5KShgB3ArcnJSUtQV+05YWkpKT5wPPAi0lJSZcCzzhfQvgUaamLQNQD+AIgKSmpIDExcRWQBAx2+s8boy92XlU/4PHExMRH0Q2i0jqqV4gak5a6CETbgcsTExODEhMTw9AXPH8E2JyUlPQgsKDK+kGVfu/BpKSkocDtwLw6qleIGpP51EXAcYJ8FtAZyAWigKnA08BB9IXRxzlfHYFpwJ/RV956DYgAQoD7kpKS1td1/UKciYS6EEL4Eel+EUIIPyKhLoQQfkRCXQgh/IiEuhBC+BEJdSGE8CMS6kII4Uck1IUQwo9IqAshhB/5f3eKFx2oqbswAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"(combined_cases.sum(dim='location')\n",
" .to_dataframe()\n",
" .drop(columns=['tests'])\n",
" .plot(logy=True, title=\"Worldwide COVID-19 Cases & Deaths\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## UK NHS Triage Data\n",
"\n",
"The NHS [publishes statistics](https://digital.nhs.uk/data-and-information/publications/statistical/mi-potential-covid-19-symptoms-reported-through-nhs-pathways-and-111-online) on the number of COVID-19 triage decisions made over 999, 111, and 111 Online.\n",
"\n",
"These functions are dependent on screen-scraping the NHS website and may be more unreliable."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"Show/Hide data repr\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Show/Hide attributes\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
".xr-wrap {\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt, dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"

xarray.Dataset


  • Dimensions:


    • age_band: 3


    • ccg: 236


    • date: 54


    • sex: 3


    • site_type: 2




  • Coordinates: (6)



    • date

      (date)

      datetime64[ns]

      2020-03-18 ... 2020-05-10


      array(['2020-03-18T00:00:00.000000000', '2020-03-19T00:00:00.000000000',\n",
      
      " '2020-03-20T00:00:00.000000000', '2020-03-21T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-23T00:00:00.000000000',\n",
      " '2020-03-24T00:00:00.000000000', '2020-03-25T00:00:00.000000000',\n",
      " '2020-03-26T00:00:00.000000000', '2020-03-27T00:00:00.000000000',\n",
      " '2020-03-28T00:00:00.000000000', '2020-03-29T00:00:00.000000000',\n",
      " '2020-03-30T00:00:00.000000000', '2020-03-31T00:00:00.000000000',\n",
      " '2020-04-01T00:00:00.000000000', '2020-04-02T00:00:00.000000000',\n",
      " '2020-04-03T00:00:00.000000000', '2020-04-04T00:00:00.000000000',\n",
      " '2020-04-05T00:00:00.000000000', '2020-04-06T00:00:00.000000000',\n",
      " '2020-04-07T00:00:00.000000000', '2020-04-08T00:00:00.000000000',\n",
      " '2020-04-09T00:00:00.000000000', '2020-04-10T00:00:00.000000000',\n",
      " '2020-04-11T00:00:00.000000000', '2020-04-12T00:00:00.000000000',\n",
      " '2020-04-13T00:00:00.000000000', '2020-04-14T00:00:00.000000000',\n",
      " '2020-04-15T00:00:00.000000000', '2020-04-16T00:00:00.000000000',\n",
      " '2020-04-17T00:00:00.000000000', '2020-04-18T00:00:00.000000000',\n",
      " '2020-04-19T00:00:00.000000000', '2020-04-20T00:00:00.000000000',\n",
      " '2020-04-21T00:00:00.000000000', '2020-04-22T00:00:00.000000000',\n",
      " '2020-04-23T00:00:00.000000000', '2020-04-24T00:00:00.000000000',\n",
      " '2020-04-25T00:00:00.000000000', '2020-04-26T00:00:00.000000000',\n",
      " '2020-04-27T00:00:00.000000000', '2020-04-28T00:00:00.000000000',\n",
      " '2020-04-29T00:00:00.000000000', '2020-04-30T00:00:00.000000000',\n",
      " '2020-05-01T00:00:00.000000000', '2020-05-02T00:00:00.000000000',\n",
      " '2020-05-03T00:00:00.000000000', '2020-05-04T00:00:00.000000000',\n",
      " '2020-05-05T00:00:00.000000000', '2020-05-06T00:00:00.000000000',\n",
      " '2020-05-07T00:00:00.000000000', '2020-05-08T00:00:00.000000000',\n",
      " '2020-05-09T00:00:00.000000000', '2020-05-10T00:00:00.000000000'],\n",
      " dtype='datetime64[ns]')



    • age_band

      (age_band)

      object

      '0-18 years' ... '70-120 years'


      array(['0-18 years', '19-69 years', '70-120 years'], dtype=object)



    • ccg

      (ccg)

      object

      'E38000001' 'E38000002' ... 'ZC040'


      array(['E38000001', 'E38000002', 'E38000004', ..., 'ZC010', 'ZC030', 'ZC040'],\n",
      
      " dtype=object)



    • site_type

      (site_type)

      int64

      111 999


      array([111, 999])



    • sex

      (sex)

      object

      'Female' 'Male' 'Unknown'


      array(['Female', 'Male', 'Unknown'], dtype=object)



    • ccg_name

      (date, age_band, ccg, site_type, sex)

      object

      'NHS Airedale, Wharfedale and Craven CCG' ... nan


      array([[[[['NHS Airedale, Wharfedale and Craven CCG',\n",
      
      " 'NHS Airedale, Wharfedale and Craven CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " [nan, 'NHS Ashford CCG', nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG', nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[['NHS Airedale, Wharfedale and Craven CCG', nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " [nan, 'NHS Ashford CCG', nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG', nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " [[[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " [nan, 'NHS Ashford CCG', nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG', nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " ['NHS Ashford CCG', nan, nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " [[[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " [nan, 'NHS Ashford CCG', nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG', nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " ['NHS Barking and Dagenham CCG', nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Ashford CCG', 'NHS Ashford CCG', nan],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG', nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " ...,\n",
      "\n",
      "\n",
      "\n",
      " [[[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG', nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " [[[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " [[[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG', nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]]], dtype=object)




  • Data variables: (1)


    • count

      (date, age_band, ccg, site_type, sex)

      float64

      8.0 6.0 nan nan ... nan nan nan nan


      array([[[[[ 8.,  6., nan],\n",
      
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 7., 6., nan],\n",
      " [nan, 1., nan]],\n",
      "\n",
      " [[35., 18., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[12., 7., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[19., 5., nan],\n",
      " [ 4., 3., nan]],\n",
      "\n",
      " [[46., 21., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, 1., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[ 1., nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 1., 2., nan],\n",
      " [nan, 1., nan]],\n",
      "\n",
      " [[ 3., nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " [[[[ 4., 4., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 8., 10., nan],\n",
      " [nan, 1., nan]],\n",
      "\n",
      " [[14., 18., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, 1., nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[ 7., 7., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[14., 6., nan],\n",
      " [ 2., 1., nan]],\n",
      "\n",
      " [[40., 27., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[ 1., nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[ 1., 2., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 4., 2., nan],\n",
      " [ 1., nan, nan]],\n",
      "\n",
      " [[ 5., 1., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " [[[[ 5., 8., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 9., 5., nan],\n",
      " [nan, 2., nan]],\n",
      "\n",
      " [[17., 7., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[ 7., 5., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[22., 14., nan],\n",
      " [ 2., 3., nan]],\n",
      "\n",
      " [[33., 20., nan],\n",
      " [ 1., nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[ 2., 2., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 3., 2., nan],\n",
      " [ 2., 1., nan]],\n",
      "\n",
      " [[ 1., 1., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " ...,\n",
      "\n",
      "\n",
      "\n",
      " [[[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 2., nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 9., 4., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, 1., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " [[[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 7., 5., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 5., 5., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, 2., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]],\n",
      "\n",
      "\n",
      "\n",
      " [[[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 1., 3., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 4., 12., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]],\n",
      "\n",
      "\n",
      " [[[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[ 1., 1., nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " ...,\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]],\n",
      "\n",
      " [[nan, nan, nan],\n",
      " [nan, nan, nan]]]]])



  • Attributes: (3)


    date :

    2020-05-10

    source :

    NHS England

    source_url :

    https://files.digital.nhs.uk/5F/C91A7A/NHS%20Pathways%20Covid-19%20data%202020-05-10.csv





"
],
"text/plain": [
"\n",
"Dimensions: (age_band: 3, ccg: 236, date: 54, sex: 3, site_type: 2)\n",
"Coordinates:\n",
" * date (date) datetime64[ns] 2020-03-18 2020-03-19 ... 2020-05-10\n",
" * age_band (age_band) object '0-18 years' '19-69 years' '70-120 years'\n",
" * ccg (ccg) object 'E38000001' 'E38000002' ... 'ZC030' 'ZC040'\n",
" * site_type (site_type) int64 111 999\n",
" * sex (sex) object 'Female' 'Male' 'Unknown'\n",
" ccg_name (date, age_band, ccg, site_type, sex) object 'NHS Airedale, Wharfedale and Craven CCG' ... nan\n",
"Data variables:\n",
" count (date, age_band, ccg, site_type, sex) float64 8.0 6.0 ... nan nan\n",
"Attributes:\n",
" date: 2020-05-10\n",
" source: NHS England\n",
" source_url: https://files.digital.nhs.uk/5F/C91A7A/NHS%20Pathways%20Covi..."
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nhs_pathways = coviddata.uk.triage_nhs_pathways()\n",
"nhs_pathways"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"Show/Hide data repr\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Show/Hide attributes\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
".xr-wrap {\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt, dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"

xarray.Dataset


  • Dimensions:


    • age_band: 3


    • ccg: 209


    • date: 54


    • sex: 2




  • Coordinates: (5)



    • date

      (date)

      datetime64[ns]

      2020-03-18 ... 2020-05-10


      array(['2020-03-18T00:00:00.000000000', '2020-03-19T00:00:00.000000000',\n",
      
      " '2020-03-20T00:00:00.000000000', '2020-03-21T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-23T00:00:00.000000000',\n",
      " '2020-03-24T00:00:00.000000000', '2020-03-25T00:00:00.000000000',\n",
      " '2020-03-26T00:00:00.000000000', '2020-03-27T00:00:00.000000000',\n",
      " '2020-03-28T00:00:00.000000000', '2020-03-29T00:00:00.000000000',\n",
      " '2020-03-30T00:00:00.000000000', '2020-03-31T00:00:00.000000000',\n",
      " '2020-04-01T00:00:00.000000000', '2020-04-02T00:00:00.000000000',\n",
      " '2020-04-03T00:00:00.000000000', '2020-04-04T00:00:00.000000000',\n",
      " '2020-04-05T00:00:00.000000000', '2020-04-06T00:00:00.000000000',\n",
      " '2020-04-07T00:00:00.000000000', '2020-04-08T00:00:00.000000000',\n",
      " '2020-04-09T00:00:00.000000000', '2020-04-10T00:00:00.000000000',\n",
      " '2020-04-11T00:00:00.000000000', '2020-04-12T00:00:00.000000000',\n",
      " '2020-04-13T00:00:00.000000000', '2020-04-14T00:00:00.000000000',\n",
      " '2020-04-15T00:00:00.000000000', '2020-04-16T00:00:00.000000000',\n",
      " '2020-04-17T00:00:00.000000000', '2020-04-18T00:00:00.000000000',\n",
      " '2020-04-19T00:00:00.000000000', '2020-04-20T00:00:00.000000000',\n",
      " '2020-04-21T00:00:00.000000000', '2020-04-22T00:00:00.000000000',\n",
      " '2020-04-23T00:00:00.000000000', '2020-04-24T00:00:00.000000000',\n",
      " '2020-04-25T00:00:00.000000000', '2020-04-26T00:00:00.000000000',\n",
      " '2020-04-27T00:00:00.000000000', '2020-04-28T00:00:00.000000000',\n",
      " '2020-04-29T00:00:00.000000000', '2020-04-30T00:00:00.000000000',\n",
      " '2020-05-01T00:00:00.000000000', '2020-05-02T00:00:00.000000000',\n",
      " '2020-05-03T00:00:00.000000000', '2020-05-04T00:00:00.000000000',\n",
      " '2020-05-05T00:00:00.000000000', '2020-05-06T00:00:00.000000000',\n",
      " '2020-05-07T00:00:00.000000000', '2020-05-08T00:00:00.000000000',\n",
      " '2020-05-09T00:00:00.000000000', '2020-05-10T00:00:00.000000000'],\n",
      " dtype='datetime64[ns]')



    • age_band

      (age_band)

      object

      '0-18 years' ... '70+ years'


      array(['0-18 years', '19-69 years', '70+ years'], dtype=object)



    • ccg

      (ccg)

      object

      'E38000001' ... 'E38000248'


      array(['E38000001', 'E38000002', 'E38000004', ..., 'E38000246', 'E38000247',\n",
      
      " 'E38000248'], dtype=object)



    • sex

      (sex)

      object

      'Female' 'Male'


      array(['Female', 'Male'], dtype=object)



    • ccg_name

      (date, age_band, ccg, sex)

      object

      'NHS Airedale, Wharfedale and Craven CCG' ... 'NHS West Sussex CCG'


      array([[[['NHS Airedale, Wharfedale and Craven CCG',\n",
      
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]],\n",
      "\n",
      " [['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]],\n",
      "\n",
      " [['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " [nan, 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]]],\n",
      "\n",
      "\n",
      " [[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]],\n",
      "\n",
      " [['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]],\n",
      "\n",
      " [['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]]],\n",
      "\n",
      "\n",
      " [[['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]],\n",
      "\n",
      " [['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]],\n",
      "\n",
      " [['NHS Airedale, Wharfedale and Craven CCG',\n",
      " 'NHS Airedale, Wharfedale and Craven CCG'],\n",
      " ['NHS Ashford CCG', 'NHS Ashford CCG'],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan]]],\n",
      "\n",
      "\n",
      " ...,\n",
      "\n",
      "\n",
      " [[[nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " ['NHS Tees Valley CCG', 'NHS Tees Valley CCG'],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']],\n",
      "\n",
      " [[nan, nan],\n",
      " [nan, nan],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " ['NHS Tees Valley CCG', 'NHS Tees Valley CCG'],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']],\n",
      "\n",
      " [[nan, nan],\n",
      " [nan, nan],\n",
      " ['NHS Barking and Dagenham CCG', nan],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " ['NHS Tees Valley CCG', nan],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']]],\n",
      "\n",
      "\n",
      " [[[nan, nan],\n",
      " [nan, nan],\n",
      " [nan, nan],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " ['NHS Tees Valley CCG', 'NHS Tees Valley CCG'],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']],\n",
      "\n",
      " [[nan, nan],\n",
      " [nan, nan],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " ['NHS Tees Valley CCG', 'NHS Tees Valley CCG'],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']],\n",
      "\n",
      " [[nan, nan],\n",
      " [nan, nan],\n",
      " [nan, 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " ['NHS Tees Valley CCG', 'NHS Tees Valley CCG'],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']]],\n",
      "\n",
      "\n",
      " [[[nan, nan],\n",
      " [nan, nan],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " ['NHS Tees Valley CCG', 'NHS Tees Valley CCG'],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']],\n",
      "\n",
      " [[nan, nan],\n",
      " [nan, nan],\n",
      " ['NHS Barking and Dagenham CCG',\n",
      " 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " ['NHS Tees Valley CCG', 'NHS Tees Valley CCG'],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']],\n",
      "\n",
      " [[nan, nan],\n",
      " [nan, nan],\n",
      " [nan, 'NHS Barking and Dagenham CCG'],\n",
      " ...,\n",
      " ['NHS Surrey Heartlands CCG', 'NHS Surrey Heartlands CCG'],\n",
      " [nan, 'NHS Tees Valley CCG'],\n",
      " ['NHS West Sussex CCG', 'NHS West Sussex CCG']]]], dtype=object)




  • Data variables: (1)


    • count

      (date, age_band, ccg, sex)

      float64

      17.0 16.0 27.0 20.0 ... 2.0 3.0 4.0


      array([[[[ 17.,  16.],\n",
      
      " [ 27., 20.],\n",
      " [ 27., 23.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]],\n",
      "\n",
      " [[129., 89.],\n",
      " [119., 55.],\n",
      " [190., 129.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]],\n",
      "\n",
      " [[ 3., 3.],\n",
      " [ 2., 2.],\n",
      " [ nan, 2.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]]],\n",
      "\n",
      "\n",
      " [[[ 18., 18.],\n",
      " [ 13., 19.],\n",
      " [ 22., 24.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]],\n",
      "\n",
      " [[174., 89.],\n",
      " [153., 103.],\n",
      " [229., 168.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]],\n",
      "\n",
      " [[ 4., 4.],\n",
      " [ 11., 9.],\n",
      " [ 4., 2.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]]],\n",
      "\n",
      "\n",
      " [[[ 23., 19.],\n",
      " [ 12., 17.],\n",
      " [ 31., 14.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]],\n",
      "\n",
      " [[135., 96.],\n",
      " [155., 90.],\n",
      " [225., 151.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]],\n",
      "\n",
      " [[ 4., 3.],\n",
      " [ 4., 7.],\n",
      " [ 3., 2.],\n",
      " ...,\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan]]],\n",
      "\n",
      "\n",
      " ...,\n",
      "\n",
      "\n",
      " [[[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " ...,\n",
      " [ 6., 8.],\n",
      " [ 6., 3.],\n",
      " [ 5., 9.]],\n",
      "\n",
      " [[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ 9., 12.],\n",
      " ...,\n",
      " [ 62., 40.],\n",
      " [ 62., 24.],\n",
      " [ 57., 50.]],\n",
      "\n",
      " [[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ 3., nan],\n",
      " ...,\n",
      " [ 4., 4.],\n",
      " [ 2., nan],\n",
      " [ 5., 5.]]],\n",
      "\n",
      "\n",
      " [[[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, nan],\n",
      " ...,\n",
      " [ 4., 7.],\n",
      " [ 3., 10.],\n",
      " [ 4., 5.]],\n",
      "\n",
      " [[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ 6., 12.],\n",
      " ...,\n",
      " [ 58., 38.],\n",
      " [ 51., 25.],\n",
      " [ 50., 34.]],\n",
      "\n",
      " [[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, 1.],\n",
      " ...,\n",
      " [ 4., 2.],\n",
      " [ 6., 1.],\n",
      " [ 8., 5.]]],\n",
      "\n",
      "\n",
      " [[[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ 1., 4.],\n",
      " ...,\n",
      " [ 12., 14.],\n",
      " [ 3., 5.],\n",
      " [ 8., 5.]],\n",
      "\n",
      " [[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ 18., 16.],\n",
      " ...,\n",
      " [ 76., 38.],\n",
      " [ 74., 36.],\n",
      " [ 61., 48.]],\n",
      "\n",
      " [[ nan, nan],\n",
      " [ nan, nan],\n",
      " [ nan, 2.],\n",
      " ...,\n",
      " [ 1., 2.],\n",
      " [ nan, 2.],\n",
      " [ 3., 4.]]]])



  • Attributes: (3)


    date :

    2020-05-10

    source :

    NHS England

    source_url :

    https://files.digital.nhs.uk/DA/564752/111%20Online%20Covid-19%20data_2020-05-10.csv





"
],
"text/plain": [
"\n",
"Dimensions: (age_band: 3, ccg: 209, date: 54, sex: 2)\n",
"Coordinates:\n",
" * date (date) datetime64[ns] 2020-03-18 2020-03-19 ... 2020-05-10\n",
" * age_band (age_band) object '0-18 years' '19-69 years' '70+ years'\n",
" * ccg (ccg) object 'E38000001' 'E38000002' ... 'E38000247' 'E38000248'\n",
" * sex (sex) object 'Female' 'Male'\n",
" ccg_name (date, age_band, ccg, sex) object 'NHS Airedale, Wharfedale and Craven CCG' ... 'NHS West Sussex CCG'\n",
"Data variables:\n",
" count (date, age_band, ccg, sex) float64 17.0 16.0 27.0 ... 2.0 3.0 4.0\n",
"Attributes:\n",
" date: 2020-05-10\n",
" source: NHS England\n",
" source_url: https://files.digital.nhs.uk/DA/564752/111%20Online%20Covid-..."
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nhs_online = coviddata.uk.triage_nhs_online()\n",
"nhs_online"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAE2CAYAAACOfY6TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdd3hUVf748fek90AKhN57hwsqSFE8KiqKZdeOyrK4tt3vrquuuLp2XBXLD1FXse66a6+o6FEExcoFVHrvJEAK6X3m98eZhCGkTiaZSfJ5PU+eJGfuPffcMNzPnO5wuVwIIYQQAEH+LoAQQojAIUFBCCFEJQkKQgghKklQEEIIUUmCghBCiEoSFIQQQlQK8XcBRMtkWVZPYCfwF9u2H/dIvxq4yLbtcyzLuhtIsm37xirnrgNutG17mWVZw4GHga5ABLDVnefGGq47E/gTEA04gO+AO2zbPuB+PQ64BzgbqBhv/T5wj23bBZZl/QwstG37eY88Y4GDwDjgr8A627YftSzrZXc+GUApUAJ8DDxi23ZuLX+bMGCW+x6HeqRfCNwFRAGZwB9t2/6xyrkvASe5f+0DHAAK3b+Ps207x+PYTcBJtm1n1VQWX7AsywVsB8owf/NQYAVwrW3bhbWc1w643rbtB5uyfMK3pKYgGqMMuN2yrKF1HlkNy7LCgS+Ah9wPz37Ae8AHlmU5qjn+WuD/gN/Ytj0QGIYJTF9YlhVsWVYo8BnmoTvKtu0BwFigC/CRZVlBwMvA5VWyPh8TCNZVU8x/2rY90LbtYcBkoLs7r+PK5y7jbGAP8M8q6f2A54DzbdvuB9wLvO0ucyXbtq9xX28gsB+4sOJ3z4DgPnZgUwcEDye6rzcAGIgJ4jfUcU47YG6Tl0z4lNQURGMUA7cC/7Esa5xt2yUNPD8CSMB8Sse2bZdlWYvcr4W58wfAsqwIYB5wsm3bO9zHl1iWdb/7uGTgFCASuM62baf7mBzLsq4BNgBnAq8B/7Qsq6tt2/vc2V8OvFhXYW3bzrMs63pgLzAGsKs5ZhGwyLKsKcBTHi+NBNZ6lP1jy7KigdHAj1Xzqcqd3wPAcuBS93mZ7vvOAuYDMzC1o0zgctu2N1mWNcB9b12BdGALsNm27bsty+oDLAB6YZ4Ff7dt+416/B1KLMv6BujtLtu57rJFYP7dHgaWAouBaHeN5nz3320+MB6IB/4N3GXbdnld1xTNR2oKorFewXxav7eG16+wLGuT5xfQH8C27Wzgb8A3lmUttSzrQUABL9q2XVwln2FAkW3bGzwTbdt22rb9T9u204CTgU8rAoLHMaWYGsQk27YPA59gHqxYlpUCTABer8/N2rZdgAkw/epzvIc1wAjLssZaluWwLOtSzCfplAbkMQ7TlNW7Sg1hGuYB3de27V7AeuAay7JCgI+ABbZt9wAuwvx9cb/2P+B227YHAZOA+y3LGlhXISzL6gich6mhBWEe9BU1oGswD/qNwFQg313D2Ag8ggmkw4EBwCDgdw24f9EMJCiIRrFt2wXMAWZaljWxmkP+49H8UdEsssXj/EeBbpigkgX8A/jZsqykKvkUY9qzj2NZVlTVZpg6vARc5v75YuAD27aPNOD8EOCIZVk3ewS7lbWdYNv2NmA28CywGVPTWAvU2DdRjTzgcfff3DPvxcBNwCXumtMpmD6XQUCkbduvu4/bCbzrPq0/MAJ4wx2ov8I0u02o4do/uO9zK7DPfQ/vuQPwcKC/ZVm3YIJ8dA15XIipWW7EBMnRwIkNuH/RDCQoiEZzf/r+PabWEFff8yzLOtmyrHtt2y60bXuZbduPYB5KGcC5VQ7fBsRZljWkSh7BwG7MA+47YJr706vnMaHAGcA37qRPgc6WZQ3GNB291IAyxwNDMU0w8z2C3dg6zosANti2Pca27f6Yh2c3YFd9rw2kVq0FufO+DFMjKAbewPw7AAQDQVX6PyqCZxDm7zzII1ifBLxTw7Ur+hT6AZ3cx17oDt7rMX+Tb4Hbail/EHC2x/XGAHfWddOieUlQED5h2/bHwOfAHQ04bRcwx7KsszweXF2BHpjRLp75F2D6FF62LKsHVD7sH8WMWFoNvIV5MC60LCvKfUwM8ALm0+0Sd16lwH+Au4EOmPbvOlmWlYgJIF9W9A00QBDwvTsQgQmiWxuYz3EBwe1M4H3btt/CdHJPdV9vI2bU1G/c5R+IadsH80m/ELjK/Voy8DWQWFchbNtOxwwQGIapJQDMt237O0zzVMVzxQUEe/zbfgLc5jEo4BXgtLpvWzQnCQrCl/4K5NR5lJu7o/ccTNPHRsuyNmAe7H+1bXt5Nac8gGl++cSyrC3AOiAGmOHuWyjBPJSKMU1Qm4FVQBpwTpUOzZcxD8tXqvv07eE2j76Q7zEB6NL63qPHvRYAVwNvWZa1C9P2Pquh+dTgeeBiy7LWY0ZvLQEuwAxpPQ/4P8uydgCvYgJgvjswno/pe9gKLMP0L2yvJv/q7McEhB8wNYUd7iY0B3DQsqw7MH/3He7XBgF/xnRGb3Gfsx7T2SwCiEOWzhaidXJ/Qr8PeN627d2WZXXANPHMriHoCiFBQYjWzLKsyzFzBYLdX8/btv2wf0slApkEBSGEEJWkT0EIIUQlCQpCCCEqSVAQQghRqTWsfSSdIkII0XDVrhAgNQUhhBCVJCgIIYSoJEFBCCFEJQkKQgghKklQEEIIUUmCghBCiEoSFIQQQlSSoCCEEKKSBIXG2L/a3yUQQjQT27ZRSjFnzhxmz57NxRdfzOLFi6s9Njc3l/fff7/yvNtvv705i9ooEhS8VVoIz58K2fv8XRIhRDOxLIvnnnuORYsWsWjRIhYsWIDTefweTZ5BoaVpDctc+EfmTsAFaWshvqu/SyOEaGa5ubkEBwfzxhtv8OmnnwKQmJjI/PnzmTt3Ljt37uS+++5j2rRp7N+/nxtvvJGsrCxOPvlkLr/8cq666ireffdddu3axSWXXMJXX31FcHAwM2fO5PXXX+epp55i9erVFBcXM2TIEG6++WZ++9vf8uabbxIREcHbb79Nbm4usbGxfPLJJ7hcLgYOHMhtt9W2TXbdpKbgrYxt5nvaWv+WQwjRbGzbrmw+uuuuu7jjjjs4fPgwL7/8Mi+//DK7d+9m3759PPjgg/Tq1Ys777wTgPz8fB577DFeeeUV3n//faKjo+nWrRs7d+5k5cqVjB49mjVr1rBmzRrGjx9Pfn4+4eHhvPTSS7z00kt8/vnnBAcHM2XKFJYtWwaA1prp06fz7rvvcuutt/Liiy/Ss2dPioqKGnWPUlPwVsY2iOsKqb/4uyRCtDk9//axz/Pc9dDZdR5jWRbz5s07Jm3nzp088cQTOBwOysvLq21O6tevH2FhYQCEhYVRVlbGaaedxnfffcf69eu59tprWbZsGS6XC6UUEREROJ1OnnjiCQCCg4NxOp1cdNFFzJ8/nxEjRhAfH09SUhL3338/b7zxBocOHSIlJYXGbpwmQcFbGdthyAzY+JG/SyJEm1OfB3hz2Lx5M19//TXPPfccxcXFlZ/igWMezg7H8QuSTp48mb///e+EhoYyfPhwFi1aRFBQEEOGDGH58uWkpqZyzz33cOTIEd577z0Aunfvjsvl4r///S8zZswA4IMPPuCvf/0roaGh3Hvvvfz4449MmTLF63uS5iNvZWyDfqdDfjoUHvF3aYQQftCtWzdcLhfXXnst999/P8OGDeODDz6gXbt2ZGVlcc8999R4bnx8PA6Hg/79+xMUFES7du3o2bMnDoeDwYMHs337dq6//noWLlzI8OHD+eCDDwC44IILWL58OSeeeGJlGWbNmsWcOXPIyspizJgxjbqneu3RrJRyAFcAZ2utL/FIHwfM01pPdf8+F7gQs073Qq31C0qpROA1IBZwArO01luVUtOA+4EyYA1wPWZvhKcAC1OL+YfWuvoxX0f5Zz+FR/rCH1bAG1fAaXdDz5P9UgwhRNvy6aefsn//fmbPnt3YrLzbT8H9UF8FPFIlPQz4GxDs/n0QcDFwIjAJuEsplQDcAizVWk8AngDmKaWCgGeAGe7jOwNnAWcAvdxp5wILlVLBDb3TJld4xAxJjekIKcOls1kI0SyeffZZ3nrrLS6++OImu0adQUFrnaG1Hg1cUuWlW4GnPX4fBSzTWpdqrfOAn4ARwGhAu49ZAowFUoBsrfVerbUL+MydPtpcUru01vuBQ0B3r++uqWRuh4Te4HBAyjBI/dXfJRJCtAF/+MMfePHFF4mNjW2ya3jVp+CuFfTQWn/hkRwGFHr8ng+Ee6ZrrY9Lq+nYKumBJWM7JPY1P3eSmoIQovVo8Ogjd9PPQ0DVBq1SIMLj90ig2DNdKXVcWk3HVkkPLBnbjgaFDoMhYyuUFUNI4MUvIYRoCG+GpHYG+gJvKaUARiqlHgZeBm5x9wFEAOMwncerganAz8DpgA2kAXFKqa7Afnf6i5hO5+uVUk8CnYAOwF5vb67JZGw3I48AQiOhfS84vAk6jfBvuYQQopEaHBS01vuAIRW/K6WWaa1vdf/8JvAtpvP5Aa11hjtgvKaUmo5prvqd1rpcKXUD8A4mEKwDPsaMJDoHWAGEAjdprcsac4NNImMbnHj90d8r+hUkKAghWrh6DUkNcM17Ay4XzOsGf14Lke1N2rf/zyyMd9bDzVoUIUTz2b59O/Pnz6e0tJSSkhImTJjArFmzCAk5/rO1bdu88847zJs3j9tvv517772X0NBQP5S6Vt4NSRVV5B2CkLCjAQHcnc0yAkmI1iozM5Nbb72VW265heeff56XXnqJwsJCFi5cWOe58+bNC8SAUCNZ5qKhPDuZK6QMh7R14HRCkMRZIVqbDz/8kOnTp9OrVy8AgoKCuP7665kxYwZLly7ljDPOYN26dRQWFvL4448fc+706dN5++23mTdvHjExMezdu5eDBw8yd+5chg8fzvvvv8/ixYspKCjg/PPP5ze/+Y0/brGSPMEaKnP78UEhKgEi4uHILr8USQjRtFJTU+nRo8cxaaGhoSQlJZGamsoJJ5zA008/zeDBg1mxYkWN+cTFxfHkk08yZ84c3nvvPXbt2sXnn3/Ov/71L1599VW01uzb5989WqSm0FAZ2yCxz/HpFZ3NCb2bv0xCtDV3xzdBntk1vtSpUyd27959TFppaSnp6ekkJSUxZIgZexMXF1fr0tWDBw8+5ritW7eye/durrvuOgBycnLYvn07Xbv6b4+W1hkUDm+BHxbC9Cd9n3fGdhj+2+PTKyaxDZnh+2sKIY5VywO8KZxzzjnMmTOHKVOm0LNnT1wuF08//TRKKb788stqV0GtTlCV5uVevXrRr18/HnvsMYKCgnjzzTcZMGBAU9xCvbXO5qPdK2D1q5B32Pd5Z2yDhBpqCtLZLESrlJSUxEMPPcSDDz7IzJkzueyyywgNDeXGG29sVL59+/Zl7NixzJ49m5kzZ7Jr1y46dOjgo1J7p3UOSV38F1jzb5j2T7Bm+e5KznJ4sDPcuhPCoo59LWs3vHgG3LzJd9cTQoim04aGpKatNcFgwwe+zTd7H0QlHR8QANp1h5KCpqmdCCFEM2l9QcHphEMbYML/wf7VkJ/hu7xr6mSGoyumShOSEKIFa31BIWunGSIa1wn6nAqbfbiXa0Y1w1E9ySQ2IUQL1/qCQtqv0HGY+Xnweb5tQqqtpgDumoIsoy2EaLlaYVBYZx7OYFYy3fsTFGT6Ju/qZjN7kl3YhBAtXCsMCmuPBoXwGOg9GTZ/6pu8q5vN7Cl5ABzZCyX5vrmeEEI0s1YaFIYe/X3wDN80IZUVQ06qGWVUk+BQSO4PBzc0/npCCOEHrSso5GeYT+ntPNYo6Xc67Pkeiho5AzJrF7TrZh78tUkZBmm/NO5aQgjhJ60rKBxcCx2HmOGhFSLioOfJsHlJ4/KuaSZzVSkjpF9BCNFita6g4Nmf4GnwebDh/cblXVcnc4WKhfGEEKIFamVBYV31QWHANNi1AopyvM87Y3vtw1ErpAw1+zWXB94uokIIUZdWFhSqdDJXiIiH7ifB1s+9z7uuiWsVwmMhNgUytnp/LSGE8JPWExTKiiFzByQPqv71xjYh1bf5CKDzKFMzEUKIFqb1BIXDm6B9TwiNqP71AdNgx3Iozmt43sW5UJwDsZ3qd7z1O/h+oTQhCSFanHptsqOUcgBXAGdrrS9RSp0EPOp+ORWYqbUuUErNBS7ELMm6UGv9glIqEXgNiAWcwCyt9Val1DTgfqAMWANcj1kG+ynAcpftH1rrxfW6k5o6mStEJUC3cbBNw5Dz65VlpYztZke1+u6/3GM8xHQ0NZNhFzXsWkII4Ud1PuXcD/VVwCMeyQswD/cJwB7gGqXUIOBi4ERgEnCXUioBuAVY6j72CWCeUioIeAaY4T6+M3AWcAbQy512LrBQKRVcrzupqZPZ0+DzYL0XTUiZ9exkruBwwKS/wjePQcvfr0II0YbUGRS01hla69HAJR7Jz2mtN7t/zsF8qh8FLNNal2qt84CfgBHAaEC7j10CjAVSgGyt9V6ttQv4zJ0+2lxSu7TW+4FDQC1TiD3U1MnsacDZsH0plBbWK8tK9e1k9tT3NFOz2PJZw84TQgg/8qpPQWv9HIBS6gLgbOAVIAzwfNrmA+Ge6Vrr49JqOrZKeu1cLvfEtTpqCtGJ0GEQ7P2xziyP0ZBO5goOB0y8Gb55VGoLQogWw6ugoJSKUUr9B1DAVK31EaAU8OzljQSKPdOVUsel1XRslfTaZe+FkEiISa678D0nws6v6z7OkzdBAWDQuVCYBbu+afi5QgjhB/XqaK7Gq8DzWmvP5UfXALe4+wAigHGYzuPVwFTgZ+B0wAbSgDilVFdgvzv9RUyn8/VKqSeBTkAHYG+dpamrk9lTr4mw9IH6HQvmU359l7ioKigYTv4zfDMfek1q+PlCCNHMGlxTcHc8TwNuU0otc39drLXeALwJfAssAx7QWmcAD5vT1DLgZuBvWuty4AbgHWAFpu/gY0yfwx532vvATVrrusd1NiQodDsBDq6v/9DUgkzAYUYveWPYbyF9G+xb5d35QgjRjByult/e7eL1y2HoBTD0wvqd8dLZ5hN8v9PqPnbPD/DZXPj9Uu9L+OO/TJPVJa95n4cQQviWo7rE1jF5LW2t2fWsvnpNhF317FfYsdzULhpj1JVmB7hDGxuXjxBCNLGWHxSKsiE/3Uwuq6+eE2FnPTt/N34Eg6Z7V7YKYVFw4h9gxeONy0cIIZpYyw8KB9ebYaZB9ZvjBkBXC9K31L3xTuYOyEtrfE0BYOxs2Kohc2fj8xJCiCbS8oNCQzqZK4SEQ5cxsPu72o/buBgGnt2wgFOTiHiwroEfnm58XkII0URaSVCoYyZzdXpNqrsJyRdNR56GXmRqC0IIEaBaSVBoQCdzhV6Tau9szkk1TUw9fTi/IHmgWW01e5/v8hRCCB9q+UHh8GboMLjh53UeBVm73fMQqrFpMfQ/A0LCGlc+T0FB0GMC7PrWd3kKIYQPtfygENcZwmMafl5wqFlKu6bNcHzddFSh58mwWzbgEUIEppYfFBrayeyp58Tq1yUqyIQDa6DPVO/zrvGaJ8uubEKIgNUKgoIXncwVetUwX2HLEtPnEBblfd41SR4EhUcge7/v8xZCiEZq+UFh7O+9PzdlBOQegLzDx6Zv/MiscNoUgoLMzmy7pV9BCBF4Wn5QiGzn/bnBIdB9/LFNSMV5pvbQ/4zGl60mPSdKE5IQIiC1/KDQWL2q7K+wTZsO6MYEm7pIv4IQIkBJUKja2dxUo448dRgMhZlmLoQQQgQQCQodh0JBhnlAlxXD1i/M0hZNqWK+gvQrCCECjASFygll35hlsjsOhpgOTX/dnifLNp1CiIDj7XacrUuvyUf7FZq66ahCjwmwclHzXEsIIepJagrg7mxeDps/gYHnNM81Ow41+0DkpjXP9YQQoh4kKIBZqK60EOK7QvsezXPNymYrGYUkhAgcEhQAHA7ThDT4vOa9bk8JCkKIwFKvPgWllAO4Ajhba32JUqoP8BIQDOQDl2utDyulrgb+CDiBD7TW9ymlwoF/A13d17tJa/2jUmos8BRQDqS68yhSSs0FLsRsKr1Qa/2CD++3ZtOfhGAfrohaHz1PhlUvN+81hRCiFnXWFJRSicAq4BGP5AeAp7TWE4DPgNuUUu2Ae4HJwEnA+UqpYcA1QLrWejxwHbDQnccCTIAYDxwAZiulBgEXAycCk4C7lFIJjb/NegiP8e0y2fXRcSjkHYTcg817XSGEqEGdQUFrnaG1Hg1c4pE8GqjYQmwJMBYYDKzRWudqrUuBLwHL81it9Sqgq1IqBOgNrKySxyhgmda6VGudB/wEjGjcLQawoGCzzIYspS2ECBDe9imEAYXun/OB8CpptaUXYZqRnFprVz3zaL16niyb7gghAoa3QaEUiHD/HAkUV0mrLT0MKKty7bryaL1qWweppACW3g+HtzRvmYQQbZa3QWE1ULEDzemADawHRiqlYpVSwcBp7vTKY5VSI4EDWusyYKdSakyVPNYAU5RSwUqpaGAc8KuXZWwZUoaZuQp5h45N32fDvybCunfh+6f8UzYhRJvjbVCYC9yklFoGnA08pLU+AtyN6Uv4FjP6aC3wItBRKfU18CxwgzuPG4EFSqnlQHfgea31BuBN9/nLgAe01hlelrFlCAqGHicdXQeprMTUDv53CZz6d7h6MWx4H0ry/VtOIUSb4HC5XHUfFdha/A3w3QLI2mU2DHpvDsR0hHMXQGyKef2138KQGTDyMr8WUwjRqjiqS5TJa4GgxwRY+za8fBZYs+CyN48GBIDRV8Lqf/uvfEKINkOCQiBIGQ6jroDZX8CYq80Ma0/9z4SMbZC+zS/FE0K0HdJ81FJ8/ndwBIO6x98lEUK0DtJ81KKNmgm//A/Ky7zP48VpsPt735VJCNHqSFBoKZL7Q/uesPVz785P3wZ7voM9EhSEEDWToNCSjLoS1njZ4bzubYjtDKm/+LZMQohWRYJCSzJkhpnP0NCNeVwuWPuWmfcgQUEIUQsJCi1JeKzZLvSX1xt2XurP4CyH4RdD/mEoPNI05RNCtHgSFFqaUTNNE1JDRo2tfRuG/QaCQ8xy3Wmte+UQIYT3JCi0NN3GgSMI9vxQv+Od5bDuHRh2kfm90wg48HPTlU8I0aJJUGhpHI6GdTjvWgHRyZA8wPzeeaT0KwghaiRBoSUacSlsWgxFOXUfu/Yt03RUodMICQpCiBpJUGiJYpKh50RY/27tx5UVw8aPYOiFR9OSBkDOfijObdoyCiFaJAkKLdVJN8Cyh2ofnrpVm47l+C5H04JDoMNgSFvb9GUUQrQ4EhRaqh7jzeJ5b8+qeemLtW8d7WD2JJ3NQogaSFBoySbdCiERsPTe418ryoHtS2Hwece/Jp3NQogaSFBoyYKC4ILnzZadmz4+9rVNH5v9n6MSjj9POpuFEDWQoNDSRSfCb16GD/8ImTuOptfUdASQPMjs9CZbfAohqpCg0Bp0tWDybfDmTCgthLxDsM+G/tOqPz4kzMxbOLi+ecsphAh4EhRai3G/h6T+8MktsP49GHAmhEXVfLx0NgshqhHizUlKqRBgEeCeJssdQC7wFFAOpAKXa62LlFJzgQsxu/ws1Fq/oJRKBF4DYgEnMEtrvVUpNQ24HygD1gDXa62dXt9dW+JwwPQn4flTzdyECxfVfnznkbBvVfOUTQjRYnhbUzgdiNFanwTMBB4GFgA3aa3HAweA2UqpQcDFwInAJOAupVQCcAuwVGs9AXgCmKeUCgKeAWa4j+8MnOX1nbVF4bHw21eh03DoPaX2Y6WzWQhRDW+DQhYQ764xdADSgd7ASvfrS4CxwChgmda6VGudB/wEjABGA7rKsSlAttZ6r9baBXzmThcN0WEQXPURBIfWcdwQyNgGpUXNUy4hRIvgbVBYA4QCmzAP72cAp/thDpAPhANhQKHHecela63rOlY0hdAISOwLh6SzWQhxlLdB4W/Ad0A/YBCwEPNQrxAJFAOlQERt6Uqpuo4VTaWzdDYLIY7lbVAIBQ67awZHMJ3F25VSY9yvnw7YmBrFFKVUsFIqGhgH/AqsBqZWOTYNiFNKdVVKOTzSRVPpJDObhRDH8jYoPA6coZRaAXwF/B24HliglFoOdAee11pvAN4EvgWWAQ9orTMwHdNKKbUMuBn4m9a6HLgBeAdYARwCqkzTFT4lnc1CiCocroZs6xiYWvwN+E1JATzcG/62x0xoE0K0JY7qEmXyWlsWFgXte8Lhjf4uiRAiQEhQaOs6j5TOZiFEJQkKbZ30KwghPEhQaOtkBJIQwoMEhbYuZRgc2lDz7m1CiDZFgkJbFx4D8V0hfbO/SyKECAASFIQsoy2EqCRBQUC3E+C7BbDza3+XRAjhZzJ5TYDTCevfhaX3QWI/OO1uSBnq71IJIZpWtZPXJCiIo8pKwH4RvnkU+io4ZS606+bvUgkhmoYEBVFPRTnw7ZNgvwAnXAdTbvN3iYQQvidBQTRQTir8ayJc8ykk9fN3aYQQviVrH4kGiusEo66ElS/4uyRCiGYiQUHUzroGfn0dSvL9XRIhRDOQoCBq1647dD8J1r7d/NcuLZQ9pIVoZhIURN3G/g5WPg/N3f/05X2w/KHmvaYQbZwEBVG33qdCcR7sa+bdUVN/hm1fNO81hWjjJCiIugUFHa0tNBeXCw6ug4ztkHeo+a4rRBsnQUHUz8jLYfMSyE9vnutl74OQSOh9CuxY3jzXFEJIUBD1FJUAg86BNf9unusdXAcdh0CfU2D70ua5phCCEG9PVEr9DrgRE1jeAv4HvAQEA/nA5Vrrw0qpq4E/Ak7gA631fUqpcODfQFd3GW7SWv+olBoLPAWUA6nuPGT4SaAYOxveugrG/xGCgpv2WmnrzPpLfU6Fb+ab5iRHtXNthBA+5FVNQSk1ALgIsIBR7nweAp7SWk8APgNuU0q1A+4FJgMnAecrpYYB1wDpWuvxwHXAQnfWCzABYjxwAJjt7Y2JJtBlNEQlNU/n78G10HEYJPSGoFA4vKnprymE8Lr56GxgJ/Ah8DWwFhgBaPfrS4CxwGBgjdY6V2tdCnyJCVHvnJoAACAASURBVCSjK47VWq8CuiqlQoDewMoqeYhAMnY2/NQMHc4H15uagsMhTUhCNCNvg0IK5sH+W+BC4FGgC1Dofj0fCAfCPNJqSy/CNCM5tdauKseKQDL0Ati/CjJ3NN01SvIhez8k9jW/9zkVtn/VdNcTQlTyNigUAZ9orfO11geBVUAUEOF+PRIoBko90mpLDwPKqpSn4lgRSEIjYeRlYL/UdNc4tNEswBccan7vNQn2fA9l8nYQoql5GxS+BiYopYKUUlHAUOBzYKr79dMBG1gPjFRKxSqlgoHT3OmrK45VSo0EDmity4CdSqkxVfIQgcaaBT+/ZpahaAppayFl2NHfoxIgeQDs/bFprieEqORtUPgSUztYhQkGDwHXAzcppZZh+hwe0lofAe52H/8tZvTRWuBFoKNS6mvgWeAGd743AguUUsuB7kAzzpYS9ZbYx2zh2VSrpx5cDx2r7PzW51TpVxCiGch+CsI7hzfDS9PgRtt8kvelF8+EKbdD78lH03Z9C5/NhWtlIpsQPiL7KQgfSh4Ag2fA8od9m6/L5R55NOzY9K5jTed2foZvryeEOIYEBeG9KbfD2jfN+kS+cmQ3hMUcX/sICYMe42HnMt9dSwhxHAkKwnsxyTD+JtB3+S7PivkJ1ZF+BSGanAQF0TgnXAepv8KuFb7JL8295lF1KuYrtPx+MCEClgQF0TihEXDaP+CzO8DpbHx+B9ceP/KoQmJfwAHpWxt/HSFEtSQoiMYbeiEEhcDatxqfV9q64zuZK8iSF0I0OQkKovEcDjjjQfjy3sZNaCvOg7yDkNCn5mP6nAI7ZMkLIZqKBAXhG91PgK5j4PuFdR9bk0MbIKk/BNeyonuvKbD7Oygr8f46QogaSVAQvnPa3SYo5B707vy0tTWPPKoQnWhmVO9bWftxQgivSFAQvpPQG0ZcCt8+6d35B9eZPRTq0lv6FYRoKhIUhG+dcC38+jqUerFhXm1zFDz1nQqbP5GhqUI0AQkKwrfa94DOo2Djhw07z+mEgxtqnqPgqft4cATB1s+9K6MQokYSFITvjbm64fstHNkFEfEQ2b7uY4OCYOLNZt0lqS0I4VMSFITv9T/TLF53eHP9z0lbV7+mowqDz4OibNgpq6YK4UsSFITvBYfCqMth1Sv1P+fguppnMlcnKNhdW3ik4eUTQtRIgoJoGqNnNqzD+eD6+vUneBr2G8jea+YtCCF8QoKCaBrte0KnEbDxo/odX3ULzvoIDoGJf4GvH21w8YQQ1ZOgIJrOmKth1ct1H1eUA/npZp5DQ424FA5vgv2rGn6uEOI4EhRE0xlwFmRshcNbaj/u4HroMND0EzRUSDhM+JPUFoTwEQkKoukEh8LIy2F1HR3OB2vZQ6E+Rs80NYW0td7nIYQAJCiIpjZ6Jvzyv9o7nOu7vEVNQiPhpBvhm/ne5yGEAKCW5SjrppQKBX4CzgeSgaeAciAVuFxrXaSUmgtcCDiAhVrrF5RSicBrQCzgBGZprbcqpaYB9wNlwBrgeq21D3ZuEX6T0AtShsOmxTDsouNfzztsRg8Nv7hx17FmwZNPmqaq5P6Ny0uINqyxNYW/YB7sAAuAm7TW44EDwGyl1CDgYuBEYBJwl1IqAbgFWKq1ngA8AcxTSgUBzwAz3Md3Bs5qZPlEIKiuw7k4F5Y9BAvHQp+p0HVc464RHgMn/AFWPNa4fIRo47wOCkqp/kAfoGJz3t5AxXrGS4CxwChgmda6VGudh6lVjABGA7rKsSlAttZ6r9baBXzmThct3YCzzOzm9G1QXgo/PQ8LxkDGdpizDKY9VPseCvV1whzY8hlk7mx8XkK0UV4FBfen+nnAHR7JTvfDHCAfCAfCAM+tuI5L11rXdaxo6ULCYORl8OmtsHCcWeH08rfgwufNfAZfiYg3zUjfPuG7PIVoY7ytKfweWKy1PlxDXpFAMVAKRNSWrpSq61jRGlizzLadZz8GV75nJrY1hROvg/XvQ86BpslfiFbO26BwCnC1UmoZcCbwOpCtlBrjfv10wMZ0Fk9RSgUrpaKBccCvwGpgapVj04A4pVRXpZTDI120Bu17wBXvmD2Wm1J0kqmVfPdU015HiFbK4Wrk0sNKqZeBuzGjj57EfOJP59jRR+cCwcC/tNaLPEYfRWAC0+88Rh/djRl9tA64rh6jj2TtZHGsnAPw9Elw02qzfacQojqOahMbGxQCQIu/AdEEPvoTRCXB1Dv9XRIhAlW1QUEmr4nWacL/gf2i2XNBCFFvEhRE65TQC/opM/xVCFFvEhRE63Xyn+HHZ6GkwN8lEaLFkKAgWq8Og6DbCXUvyCeEqCRBQbRuk/4K3y2AMpnyIkR9SFAQrVvnUZA80KzUKoSokwQF0fpN+iuseBzKy/xdEiECngQF0fr1GA+xnWHtm/4uiRABT4KCaBvUvfDFPTJvQYg6SFAQbUO3sdD/DFj6gL9LIkRAk6Ag2o7T7ob178KBn/1dEiEClgQF0XZEJcDUf8DHfwFnM+3ymr0PPr8TnjkZDq5vnmsK0QgSFETbMvJyCApp+glt+2x46xp4ZgI4y2DUFfDfi2WfBxHwZJVU0fakrYNXz4MbfjT7L/iKsxw2fgjfPw15aWbP6FFXQkScef2bx2DduzDrUwiPrT0vIZqeLJ0tRKUlc81IpBkLfZOfy2WW6z6wxsyLGHgOBAUff8ziP8ORPXDZGxAc6ptrC+EdWTpbiEpT/gbbl8Lu732T34rH4cBquOYTGHze8QEBzHakZz1qXlv8ZxMkhAgwEhRE2xQRB2c8YDqdy0sbl9fat2HlC3DZm3U3CwWHwEUvQdqv8M2jjbuuEE1AgoJou4acDzEd4dsnvc9j9/fw6W2mOSiuc/3OCY8xAWTVq/DLG95fW4gmIEFBtF0OB5zzGPz8XzNSKD+9Yeenb4M3Z8IF/4KUoQ07NzYFLn8LPr/DbATU2NqKED4iQUG0bQm94bpvIb4rPH0S/PpW/dr689PhtYvg1Dug72neXbvDQLjyfdj4ETx9Imz4QPoZhN95NfpIKRUDvAB0BkKBvwClwFNAOZAKXK61LlJKzQUuxPR0L9Rav6CUSgReA2IBJzBLa71VKTUNuB8oA9YA12ut65plJP+LhG/sXwXv3wDte5oaRE3NQaWF8Mq50PNkOO0fjb+uywXbvwR9N4RGmHWaeoxvfL5C1M53Q1KVUn8CkrTWdyqlhmMCRDnwR631T0qpBcBm4EvgdcACwoH1wCjgViBTa/2wUupC4FLgt8AOYCKwD/gAeE5rvbiO4khQEL5TVgzfzIeVi2DybRCVCLlpZt5B7kHzPXOXWUvpgkUQ5MPKttMJa9+CpfdDxyEw9U7zvSmVlUBIWNNeQwSqaoNCiJeZbQC2uX/OcefTA1jpTluCechnAsu01qVAqVLqJ2AEMBq4zePYx4AUIFtrvRdAKfUZMBaoKyj4RG5RKZvTcknNLiItu8h8zykkNbuIyNBgZk3oxakDOxAUVO3fUbQWIeFwylwYdC4sm2fmEsSkQGxH6DDEfI9JgeQBvg0IYPIbcbEZ0rpyEfz7fOg4FMbfCL1PMX0gvrTxI3jvD6bTu+cE3+YtWiyvgoLWWgMopboD/wbuBBZprSs+tedjagZhQKHHqcela63zlVK1HdvklqxL484P1tGlXSSd20WQEhdJp/gIRnVvR6f4CA5kF/H4F1t45LPN/GFKb84Z3pnQYOmOadVShsIlr/nn2qERJhCMnW1qDkvmmrkNJ90AQy/yzSf7Q5vgo/+DU+4wneWX/g+6jWt8vqLF87amgFLqauBq4C9a65VKKc+nZCRQjOlniKgtXSlV17G12pyWS2JMGO2jwghu4Kf47IJS7v5oPWv2ZPHsFaMZ0yOhxmOnD+/E11vTeWbZNuZ/voU5k3rzmzHdiAyrZpJSM3G5XDh8/elRBI7QCBh9pVk3aduX8P0C+PJeOOFas4RGaKR3+RYegdcvg9Pvh5GXQlJ/+N+lZjRUl9G+vQfR4ngVFJRS5wNTgdO01hV7HO5USo3RWq8CTgdsTGfxLUqpYMwDfxxwPbDaff7PHsemAXFKqa7Afnf6i3WV5cb/riYjv4ScwlLaRYWSGB1OYkwY3dpHMbF/EhP7JhMfdfxyAss2H+L2d9dyxpAUPvnTRKLCav9TOBwOJvdPZnL/ZFbvyeKZZdv5f19uY86kXlx5Ys9mDQ470/O54721bEjNYerAjkwbmsLJ/ZKICPVfgBJNyOGAfqeZr7S1sPxhWDjOPNQHnduwZiVnObwzG/opExDA5HvuArNg35XvQsqwprkPX0hbC0GhkNin5mVCnOWQ+rOZsb79KyjOhXP/n9mvW9TJ247mD4HuwBF30k7gaeBJzCf+dI4dfXQuEAz8S2u9yGP0UQRmWOzvPEYf3Y0ZfbQOuK6+o4/Kyp1kFpSQkVdCel4xOw7ns3zLYX7amcmAlFim9E9m8oBkeiZF8+DHG/lmazqPXDSc8X29XxBtc1ouT365hZW7srh2Um+uOLFHkz6YS8udPPf1DhZ9s4MbTunLGUNS+HLjQZasT2P9gRwm9U/mzCEpnDKwAzHhXlcCRUuw82szaS46Cc78J3QcXL/zvrwX9vwIM98//qG6/n349FaY+QF0GOT7MjfW5k/hgxsgIt6sNpvYFzoMNmXtMBgK0k2NascyiOkAfU6FPlOhMBOW3A7jb4Lxf/R9X1DL1TYXxCsqLeennZks33KYZZsPsSujgItGd+Xv5wwiNsI3C5JtOJDDk19uYc2eI1w3pQ+Xjut+THAoKXOSkV9Mem4JhaXlRIYGExkWRERosPvnYCJCgmvtxF69J4vb31lLSnwE988YSreEqGNeT88r5osNJkCs2pXFpP7JzBjVhcn9kwkLkf8ErVJ5Gax6CZY9BEMvgCm3mz0jarLhA/jsDvj9VxCTXP0xv74J+i64ajEk9W2acnsj9VfT8X7Zm9B1DJQUwOFNcGgjHNpgviLiTRDocyrEdzn2/CN74N05JhCe/6/6zz5vrHXvQGynQB1i3DaDQlW5RaU+CwZVrdufzRNfbGXd/mx6JEaRnldMel4J+cVlJESHkRgTTnRYMEVl5RSWuL9KzVdZuYtuCVH0Toqmd3I0vZNj6J0UTed2kSz6ZgefrEvjznMGM314pzr7EY4UlPDJ2jTeX7OfbYfzOGtYCjNGdmFMj/bSB9Ea5WfAV/eb0USDzjUPoB7jj33wHdwAr5wDV7xTdzPK6n+bQDPpZug12Uzw8+f7JucALFJmraohM7zPp7wMVjwGPz0H5zwOg6b7rozV+f5p+OFp05zVT4G6ByLbN+01G0aCQnPZmJpDVn4JSbHhJMWE0y4ytM6hrCVlTvZk5rP9cD47Duez43AeO9Lz2Z2Rz6kDOzD3rEG0i2r4qJO9mQV8+MsB3luzn+Kyck7qnciwru0Y1iWegSmxxzV3FZeVszE1l1/3HeHXfdkcyi3mwtFdOGtYJxlxFegOb4Gtn8Oe72H3d+aTc48J0P1E8zCcfBuMuKR+eW35zOz9sGOZ+XTdazL0ngK9JpkHW+Z2OLwZ0reYr8ObzcM7LArC49xfseYrsj2cdL0JLg1VnAcvTTPrVE38S8PPr87en0y/Su/JZvRVbIpv8vX03QIzrPiqj8y/w5f3wsbFcOY8cy+B8eFMgkJb5nK52JSWi707i3X7slm7P5sd6Xn0SophWJc4QoOD+HVfNlsP5dIzMZoRXdsxvFs8cRGhvPbjbnalF3DlST24bFx32kfLZKeA53RC+mbY/S3s+tYMsZ14c8PzcbnMQ3/HchMgdq+A0iJo1w2SBkByfzN6KWmAWSqkrBCKckznbsVX+hbTzDXjWdOpXe97KIc3roDIBDjvKd8+SItyYOl98Osb0P9MM5rLVyOvVjwOq181ASG+69H0PT+aPTfadYez55u/oX9JUBDHKiotZ1NaLmv3Z1Na5mR413iGdI6vdiTV+gPZvLhiF3pDGueM6MysCb3o2yHGD6UWfuUsN18NnSux+3t4+xoz92LizfV7wH92B6T+Ale823SzrguzzAP8p+dNc9sJfzBNcMFeDtT4+hH45XUTEKrrtygrge+eNE1Lk2+DcXP82fEtQUE03qHcIv7zwx7+++Nuyp0uurSPpGu7KPO9fSRd2kUSGRZMblEZOYWl5BaVkVtUSk5RGU6Xi34dYxncKZYBKXG1jpAqd7o4lFtEkMNBcky4zCRvDXIOmIlyMR1hxjNHtymtzsoX4IdnYLZunnb48jLYtBh+fBaO7DW7542+qv4PbJcLlv/TdCxf9VHdTVLp2+D968wM+hlPm9pD85OgIHzH5XKRnlfC/iOF7M8qZF9WAfuPFLIvq5DisnJiw0OJjQghNiKUuMiQys79LWm5bEzLYevBPDrEhTMoJY7+HWMoKCknNbuI1GyztEh6XjHtosJwuSCnsJTk2HA6t4ugU3wkndpF0DMxmnG9EuidFC2d5y1JWbEZSrv7W7j4NdP8BCZg7F919OvQJpi1xMxHaG77V5khrOWlZmHEujrmSwpMQNiyxASEmA71u46z3Ozl8f1ToO6DkZc1d1+DBAUROMrKnexMz2dDag7bDuUREx5CSnwEnduZJUY6xEZUDqUtLisnLbuIA0eOBo1th/L4cUcGJeUuTuydwAm9EzmpdwJ9kmN8FiQKSsqIDA2WoNMUVr8KX9wDXceafa2dpdBljPnqPNosOOjPkTpOJ/zyP/jibjNKaeqdx5cn9VdY/YqpHXQ7Ac59quahvrVJWwfvXWtqC9OfrH9QaTwJCqJ1cblc7Msq5IcdGfywI5Mfd2ZQVFrOGUNSOG9kF6we7RvU7FRS5mTV7iyWbznM8i2H2X4oj6jwYAamxDIwJc5872RqNnXNgBf1kLYW0reaQNCue6CMyDlWYRZ8eZ8Z7nvaP0yAWPcOrHoFCjLMEiQjL298p3FZsRkGvOY/MO0hd79G0wyd9yBBQbR+uzPyWfxrKh/9coCcwlKmj+jMuSM7M7hT3DGf+ItKTe0jLaeIrQdzWb4lnR93ZNA7OdosZzIgmRFd25FVUMqmtBw2pZpmr02puexIzyPI4cCBWf7EAeAw/8Oiw0PonhBFr6RoeiRG0zMxip5J0fRIjJJA0pIdWAMf3wwH10O/02HMVWbl2iAfr2Cw9ydY8jcTLHue7J6VfWpTzRWRoCDalk1pOXz48wE++PkAkWHBdIqP4GBOEQdziiksLadjXDgpcRH0SIxmYr8kJvZLJqEew23Lyp0UlTlxuVy4cG+W5gIXLnKLytiTWcBO9xyTXRkF7M7IZ09mAT0Toxndoz1jurdnTI/29EiMkqaplsTphNJ8M/eiqeWnmyHA25ear+AwExyGXWTmnjT2fXN4MyQPkKAg2iaXy8WavUfILiwlJS6ClLgI2kWFNusDubTcycbUHFbtzmLV7ixW786iuMzJqO7t6Z4QRbuoUNpHhRIfFUa7yFDaRYWSEB12TN9KVSVlTtbuz2blrkxW7sxk9Z4sEqLDGNW9PaO7t2dU93b07xhb4+rBLpeLMqdLJiUGOpfLLOexTZvmJUcwjP2dmYjY0ACVvQ++mgdbPoVbd0hQECKQpGYXsnr3EVKzCzlSUMqRwhKOFJSSXVhKlsfijvGRoXSMi6BTfAQd4yKICQ/hF/eM84pRWGN7JjCmR3sy80tYvSeLNXuOsGZPFodyixneNZ6U+AhyCks5UmDyznb/HBTkYGLfJKaP6MxpgzvKQoqBzuUyiyGuXGS+D7vIzP2oawHDgkyzo+DPr8GYa2DCnyCynQQFIVqacqeLjLxi906ARRzMKSKnsJQhXeIZ06M9cXWs45WVX8LPe49wOK+YdpGhtI82NZH4qFDiI0MpKXPyxcaDfPjzAexdWUzsn8T04Z05ZWCHgFiK3eVykZZTxMbUHDam5rL9UB7to8PokRhF94QoeiZG06V9ZLPVdurawySnqJQ9GQXsyshnd0YB+7IK6NIuklMHdmRQp1jf1k5zDpgO71Uvm21jOwyC5IFmV8DkgZDQywyr/fEZ+O4ps6Pf5NsgrlNFDhIUhBA1y8ovYcn6ND765QBr92WTHBtOeGgwEaFBhIeYVX0jQoKJCgsmKjyY6PAQosNC3N/Nar8VHe9BDgcOx9GnTnZhKRn5pvaTkV9MZn4J6XkllDudRIeHEBMeQmyEyS8mIgSXy/QJbUrLJSQoiEGdYhnUKY6+yTEcKSxhV0ZB5cP3UE4xHePDiQkPpazcSZnTRWm5k7JyF2VO87vT6cLlMg8Lp8uF0+XCgYOU+Ai6to+ke0IU3RJMoOnWPorisnJ2u/uDdmcWsDujgD2ZBWTmlxz9W4QGERkaTERoMMFBDg4cKaS4zFkZrHokRtE1IYodh/P4cuMhSsudnDKwA1MHdmB8nyTf7cFSXuoeybXFrBx7eLP5nnMAgsOhzylw6p3VrXorQUEIUT9Z+SVk5JdQVFpOcVk5RaXOyu8FJeUUlJSRV1xGQXG5+V5SRkFJufnP6O50dzrNd4C4iFASY8JJigkjMSaMxOhwEqLDCAl2kF9cRm5RGfnF5eQVl5JXXI7L5aJ/RxMIkmNr35W3pMzJ/iOF5BeXERocREiwg9Ag8z0k2EFIUBDB7ggV5DABK8jhoNzlIi27kL2ZhezNMkFmb1YBezILiQgNokdCFN0To+mREGVqJolRJEWHU1zmpKi0vHK146JSJ2VOJ53iI0mKCau2NuByudh+OJ+lmw6ydNMh1u3PYWiXOHonx9ArMZpeSdH0TIqme0KU75a6Ly3EVZiFo+ZlwiUoCCFEIMguLOWXvUfYlWFWRd6Vkc+u9HwOHCkiKSaM0JCgY4Y8Oxzm59DgICJDK2oqprYSERJcmWdOkemTyiksI7uwlMLSciJCg4hx18ai3V+x4SG8cPVYCQpCCBHISsqcHMwposzpOmbIc8XPJRW1lNKjtZWiUrM5ZXxkKHERIcRHhRIXYfqMIkPN/i15xWXkuWtjucWl5BeXowZ3lKAghBCiUrVBQQYoCyGEqCRBQQghRKWAm6milHIATwEWpnz/0Fov9m+phBCibQjEmsIZQC/gROBcYKFSyv+zaIQQog0IxKAwGtBaa5fWej9wCPDLtkRCCNHWBGJQCAMKPX7PB2qfvSKEEMInAjEolAIRHr9HAsU1HayUuhYztOqYL6XUudWl1/ZaQ9N9mVcAl7fav28AlKvN5tXSyttC8/Lbc6UZ730O1QjEoLAamKqUciilOgMdgL21HF/tjQHTazmnptcamu7LvAK1vDX9fb3JK1DvsaXl1dLK2xLz8udzpbnuvdp7DLjRR8AS4BxgBRAK3KS1LvMin4+8eK2h6b7MK1DLW5vWco8tLa+WVt6WmJc3x7e0f99qtfgZzUopW2tt+bscrZX8fUVb1Bbe9zXdYyA2HzXUc/4uQCsnf1/RFrWF932199jiawrNRSkVA7wAdMY0a/0FSALuwKy/9APwZ611QPxBlVJRwCuYPplQ4EYgGDMxsBxIBS7XWhf5rZBVVDdxEVgKvAT0xnyI+YPWeqXfClkNd7mvAM7WWl+ilDoJmA84Mf1hV2mtS/xZRqjxPVxKgL4naijvnZjBJwApwCda67/4p4THq23yrVJqHDBPaz3Vj0WsU2uoKTSX3wFbtNYTMR00TwL/BBRwEjDS/RUorgZ+1lpPBuZiHrALMH0044EDwGz/Fa9ax01cxDwEPtRaj8U8ePv5r3jHU0olAquARzyS5wOXaq1PxoycO9sfZatGde/hQH5PHFderfU0rfUUTL/jVuBBP5avOtVOvlVKhQF/w3wwC2gSFOpvA/Ci++cczKeAP2mtc4AoIA4zpyJQfI/5hA3QFcjGfNqu+JS9BBjrh3LVprqJi7OBPkqpr4AHgOX+LGBVWusMrfVo4BKP5Pu11ruVUqFAR8z7JRBU9x4O5PdEdeWt8ADwrNY6vdlLVbuaJt/eCjzt15LVkwSFetLGTqVUd+DfwJ1a68+VUgrYiPmUtcufZfSktV6jtT6glHoLeBYTIJwezVuBOCmwuomLLiBfa30K8B7m021A01p/opQainmoJQG2n4sEVP8eJoDfEzWUF6VUH8zD9xN/lq8G1b2HI4AeWusv/FOkhpGg0ABKqauBVzFtm1oplaC11kBP4CC1j+lvVkqpZKVUiNb6N8Ao4D8cW3WtdVKgn9Q0cfEt9+/vYB4GAcvdVNBBa70O6A8sxv0wCwSe72F3W7fnMyDg3hPVlBfgKuC1QOm/q6LqezgaeAjThNsiSFCoJ6XU+cBU4DR3R2cXTGAI0Vo7gSME1oY/j2LaXcFUvUuBHUqpMe600wmQT7Aeqpu4uByY6H79ZGCtvwpXT6HAT0qpaPdDK5MAeV9U8x4G2Bmo74kaygtwFvCpf0pVp6rv4SSgL/CWUmoZMFIp9bA/C1iXQJy8FqiuwbQNfmFajNgJvP3/27v/UD3LOo7j79PQZm4yUCIDJbyVdBSxXIg2x9H8Slp/KGkRQ9ycDO0HoqUmFv1yhKKiTR2OnDYRmUiSFJhfJH9MCM0fBAkJNyZoqVsjVmPqrOMf132uPW6zjZPnuc+P9wsG51znes6+g2fP576u+7ruC/hDRLzVff/9/srbw0+A9RFxKWVK4BvAZmBNROwEtgBX9Vjf3uyxcZHyIXVfRFxMGYpf3F95+5aZb0bEj4DHI2I7JZCX91rULnt7D3+Lqfue2KPezFxBuUf2v55y0Ke9bb6tj/6PiEcz84q+itsfLkmVJFVOH0mSKkNBklQZCpKkylCQJFWGgiSpMhQkSZWhIEmqDAVJUmUoSJIqQ0GSVBkKkqTKUJAkVYaCJKkyFCRJlecpqIqIq4FLgSMyc8e++kvTUUSMAr8HlmbmEwPt64FTM/MTPZU2JThSEAAR8SHgq5RjO8/puRxpsrXAyvFvImI+sLi/cqYORwoaF8DTwDrgduDuxd7YxgAABERJREFUiPgr8FtgIeX0tm9n5jMR8SLwCDCSmRf1VK/0/3gG+GREHJKZ24CvUc4CXxkRpwCrgf9Qzlg+G/gesCkz74mIBcBjmfmZnmqfVI4UNG4VsCEzXwDmRsTCrn1jZp4CfJMSFgDHdO0GgqarMWAjJQwAzgM2dF8vAs7NzJMpZy6fDqzt+kAZSW9ghjIURER8DDgNuKY7XHwBJSTeAZ4AyMzngMO7aaZtmfloP9VKH5h7gPMi4jhgK/B61/4X4KqIuJ5yATQnM/9EuVg6HPgK8Ms+Ch4GQ0FQDpa/NjOXZuYocALlCmo+cDJARHwK2JyZ/wW8Ca1pLzM3A28A1wN3DPzoTuA7mfld4JWB9nXAFcDWzNwytEKHzFCY5bor/wsYGA5n5lbgSeAwypXUJsp/mlW9FClNnvWU6aKHBtruA56MiAeAV4Hzu/b7ga/z3gCZcUbGxsb6rkFTVHej+djMfLPvWqS+RcTBlKWsJ2TmjP3gdKQgSfsQESdSRs+rZ3IggCMFSdIARwqSpMrNa7NQRMyj3Cz7OHAAcBmwE7iFsmHn78Cyru1W4NOUzWs/zcxfR0RDWaExB9gOLOtWckia5hwpzE4rgRe7zTmrgJuBNZQdyycBfwMuBL5M2dG5BPgSsCYiRii7PW/JzM8DvwOuHP4/QdJkMBRmpxcoS/EAtlFGjEdRHnMBZXne5ygjhhu6G2v/Ytf75bNA7tZX0gzg9NEslJkJEBFHAncDPwB+MbCqYjvw4cx8qut3KHAXZfpoLCIOZNcGtu2UqSVJM4AjhVkqIpZTNqxdlpm/4b3vhYOAt7p+ZwIPAmsyc/zZRzuBubv3lTT9GQqzUEScDXwBOC0zx6eMXoqI47uvTwf+GBGLgUuAyMyHB37Fs93ra98hlC1pCNynMAtFxIPAkcA/u6aXgNsoN5x3Alsoq4+uo3zov9b125GZZ3Srj8a3+r+Nq4+kGcNQkCRVTh9JkipDQZJUGQqSpMpQkCRVhoIkqTIUJEmVoSBJqgwFSVJlKEiSKkNB+gA0TXNX0zRffJ+fjTZNs3jYNUkTYShIk28UMBQ0LXiegjQBTdMcBKwDjqYcVDQfOKBpml8BHwUWADcBrwDLgbebptkCbALWAodSHj64rG3b1/b4C6SeOFKQJuZC4B9t254InAXMAxYBG9u2XQJcBKxo2/YhygFFN7Ztez9wA/Dztm2XAtd2f6Qpw5GCNDELgYcB2rbd0TTNJqAFTuruH8wD5uzldYuAHzdN80PKRdk7Q6pX2i+OFKSJ+TNwatM0I03TzAWWUI41fb5t28uBB3brPzLwusvbth0FVgD3Dqleab94noI0AV0QrAOOAf4NHAJcA/wMeBl4mnJQ0TLgKGA1cCXllLq1wEeAA4FL2rZ9atj1S+/HUJAkVU4fSZIqQ0GSVBkKkqTKUJAkVYaCJKkyFCRJlaEgSaoMBUlS9S5+oiI8Z8NeLQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"ax = plt.axes()\n",
"(nhs_pathways.sum(['age_band', 'ccg', 'sex', 'site_type'])\n",
" .to_dataframe()\n",
" .plot(ax=ax, label='Pathways', y='count'))\n",
"\n",
"(nhs_online.sum(['age_band', 'ccg', 'sex'])\n",
" .to_dataframe()\n",
" .plot(ax=ax, label='Online', y='count'))\n",
"\n",
"plt.title(\"NHS COVID-19 Triage Rate\")\n",
"plt.ylim(0)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Interventions\n",
"\n",
"List of interventions used by the Imperial College London model, in a reasonably simple format:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"Show/Hide data repr\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"Show/Hide attributes\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
".xr-wrap {\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt, dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2 {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"

xarray.Dataset


  • Dimensions:

    • location: 83



  • Coordinates: (2)



    • location

      (location)

      object

      'Austria' ... 'Netherlands'


      array(['Austria', 'Austria', 'Austria', 'Austria', 'Austria', 'Belgium',\n",
      
      " 'Belgium', 'Belgium', 'Belgium', 'Belgium', 'Denmark', 'Denmark',\n",
      " 'Denmark', 'Denmark', 'Denmark', 'France', 'France', 'France', 'France',\n",
      " 'France', 'Germany', 'Germany', 'Germany', 'Germany', 'Germany',\n",
      " 'Italy', 'Italy', 'Italy', 'Italy', 'Italy', 'Norway', 'Norway',\n",
      " 'Norway', 'Norway', 'Norway', 'Spain', 'Spain', 'Spain', 'Spain',\n",
      " 'Spain', 'Sweden', 'Sweden', 'Sweden', 'Sweden', 'Sweden',\n",
      " 'Switzerland', 'Switzerland', 'Switzerland', 'Switzerland',\n",
      " 'Switzerland', 'United_Kingdom', 'United_Kingdom', 'United_Kingdom',\n",
      " 'United_Kingdom', 'United_Kingdom', 'Greece', 'Greece', 'Greece',\n",
      " 'Greece', 'Greece', 'Greece', 'Greece', 'Greece', 'Greece', 'Portugal',\n",
      " 'Portugal', 'Portugal', 'Portugal', 'Portugal', 'Portugal', 'Portugal',\n",
      " 'Portugal', 'Portugal', 'Portugal', 'Portugal', 'Netherlands',\n",
      " 'Netherlands', 'Netherlands', 'Netherlands', 'Netherlands',\n",
      " 'Netherlands', 'Netherlands', 'Netherlands'], dtype=object)



    • date

      (location)

      datetime64[ns]

      2020-03-14 ... 2020-03-12


      array(['2020-03-14T00:00:00.000000000', '2020-03-10T00:00:00.000000000',\n",
      
      " '2020-03-16T00:00:00.000000000', '2020-03-16T00:00:00.000000000',\n",
      " '2020-03-16T00:00:00.000000000', '2020-03-14T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-18T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-10T00:00:00.000000000',\n",
      " '2020-03-13T00:00:00.000000000', '2020-03-12T00:00:00.000000000',\n",
      " '2020-03-18T00:00:00.000000000', '2020-03-13T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-14T00:00:00.000000000',\n",
      " '2020-03-13T00:00:00.000000000', '2020-03-17T00:00:00.000000000',\n",
      " '2020-03-16T00:00:00.000000000', '2020-03-16T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-22T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-12T00:00:00.000000000',\n",
      " '2020-03-06T00:00:00.000000000', '2020-03-05T00:00:00.000000000',\n",
      " '2020-03-09T00:00:00.000000000', '2020-03-11T00:00:00.000000000',\n",
      " '2020-03-09T00:00:00.000000000', '2020-03-09T00:00:00.000000000',\n",
      " '2020-03-13T00:00:00.000000000', '2020-03-12T00:00:00.000000000',\n",
      " '2020-03-24T00:00:00.000000000', '2020-03-16T00:00:00.000000000',\n",
      " '2020-03-15T00:00:00.000000000', '2020-03-13T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-14T00:00:00.000000000',\n",
      " '2020-03-09T00:00:00.000000000', '2020-03-17T00:00:00.000000000',\n",
      " '2090-03-17T00:00:00.000000000', '2020-03-29T00:00:00.000000000',\n",
      " '2090-03-17T00:00:00.000000000', '2020-03-16T00:00:00.000000000',\n",
      " '2020-03-10T00:00:00.000000000', '2020-03-14T00:00:00.000000000',\n",
      " '2020-03-13T00:00:00.000000000', '2020-03-20T00:00:00.000000000',\n",
      " '2020-03-16T00:00:00.000000000', '2020-03-02T00:00:00.000000000',\n",
      " '2020-03-21T00:00:00.000000000', '2020-03-24T00:00:00.000000000',\n",
      " '2020-03-24T00:00:00.000000000', '2020-03-16T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-11T00:00:00.000000000',\n",
      " '2020-03-19T00:00:00.000000000', '2020-03-23T00:00:00.000000000',\n",
      " '2020-03-16T00:00:00.000000000', '2020-03-09T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-14T00:00:00.000000000',\n",
      " '2020-03-10T00:00:00.000000000', '2020-02-25T00:00:00.000000000',\n",
      " '2020-03-14T00:00:00.000000000', '2020-03-12T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-12T00:00:00.000000000',\n",
      " '2020-03-19T00:00:00.000000000', '2020-03-22T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-22T00:00:00.000000000',\n",
      " '2020-03-22T00:00:00.000000000', '2020-03-17T00:00:00.000000000',\n",
      " '2020-04-02T00:00:00.000000000', '2020-03-14T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-12T00:00:00.000000000',\n",
      " '2020-03-23T00:00:00.000000000', '2020-03-12T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000', '2020-03-15T00:00:00.000000000',\n",
      " '2020-03-12T00:00:00.000000000'], dtype='datetime64[ns]')




  • Data variables: (2)



    • type

      (location)

      object

      'Schools + Universities' ... 'Advice to work from home'


      array(['Schools + Universities', 'Public events', 'Lockdown',\n",
      
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Closure of cultural institutions', 'Closure of restaurants',\n",
      " 'Advice to work from home', 'Keep distance from others',\n",
      " 'Schools + Universities', 'Public events', 'Lockdown',\n",
      " 'Social distancing encouraged', 'Self-isolating if ill',\n",
      " 'Closure of cultural institutions', 'Closure of restaurants',\n",
      " 'Work from home', 'Stay at home', 'Keep distance from others',\n",
      " 'Public gatherings', 'Schools + Universities', 'Public events',\n",
      " 'Social distancing encouraged', 'Lockdown',\n",
      " 'Self-isolating if ill', 'Closure of cultural institutions',\n",
      " 'Closure of restaurants', 'Advice to work from home'], dtype=object)



    • event

      (location)

      object

      'Nationwide school closures.' ... nan


      array(['Nationwide school closures.',\n",
      
      " 'Banning of gatherings of more than 10 people. ',\n",
      " 'Banning all access to public spaces and gatherings of more than 5 people. Advice to maintain 1m distance.',\n",
      " 'Recommendation to maintain a distance of 1m.',\n",
      " 'Implemented at lockdown.', 'Nationwide school closures.',\n",
      " 'All recreational activities cancelled regardless of size.',\n",
      " 'Citizens are required to stay at home except for work and essential journeys. Going outdoors only with household members or 1 friend.',\n",
      " 'Public transport recommended only for essential journeys, work from home encouraged, all public places e.g. restaurants closed.',\n",
      " 'Everyone should stay at home if experiencing a cough or fever.',\n",
      " 'Secondary schools shut and universities (primary schools also shut on 16th).',\n",
      " 'Bans of events >100 people, closes cultural institutions, leisure facilities etc.',\n",
      " 'Bans of gatherings of >10 people in public and all public places were shut.',\n",
      " 'Limited use of public transport. All cultural institutions shut and recommendation to keep appropriate distance.',\n",
      " 'Everyone should stay at home if experiencing a cough or fever.',\n",
      " 'Nationwide school closures.', 'Bans of events >100 people.',\n",
      " 'Everybody has to stay at home. Need a self-authorisation form to leave home.',\n",
      " 'Advice at the time of lockdown.',\n",
      " 'Advice at the time of lockdown.', 'Nationwide school closures.',\n",
      " 'No gatherings of >1000 people (12th March). Otherwise regional destrictions only until lockdown.',\n",
      " 'Gatherings of > 2 people banned, 1.5 m distance',\n",
      " 'Avoid social interaction wherever possible recommended by Merkel',\n",
      " 'Advice for everyone experiencing symptoms to contact a health care agency to get tested and then self-isolate.',\n",
      " 'Nationwide school closures.',\n",
      " 'The government bans all public events.',\n",
      " 'The government closes all public places. People have to stay at home except for essential travel.',\n",
      " 'A distance of more than 1m has to be kept and any other form of alternative aggregation is to be excluded.',\n",
      " 'self-isolate if ill and quarantine if tested positive',\n",
      " 'Norwegian Directorate of Health closes all educational institutions. Including childcare facilities and all schools',\n",
      " 'The Directorate of Health bans all non-necessary social contact.',\n",
      " 'Only people living together are allowed outside together. Everyone has to keep a 2m distance.',\n",
      " 'The Directorate of Health advises against all travelling and non-necessary social contacts.',\n",
      " 'Advice to self-isolate for 7 days if experiencing a cough or fever symptoms.',\n",
      " 'Nationwide school closures.',\n",
      " 'Banning of all public events by lockdown.', nan,\n",
      " 'Advice on social distancing and working remotely from home. ',\n",
      " nan,\n",
      " 'Colleges and upper secondary schools shut. 18/3/2020 only 48% closed',\n",
      " 'Since March 29 the limit is 50 persons.', 'No lockdown occured.',\n",
      " 'People even with mild symptoms told to limit social contact, encouragement to work from home.',\n",
      " nan, 'No in person teaching until 4th of April.',\n",
      " 'The government bans events >100 people.',\n",
      " 'Gatherings of more than 5 people are banned.',\n",
      " 'Advice on keeping distance. All business where this cannot be realised have been closed in all states (kantons).',\n",
      " 'Advice to self-isolate if experiencing a cough or fever symptoms.',\n",
      " 'Nationwide school closure. Childminders, nurseries and sixth forms are told to follow the guidance.',\n",
      " 'Implemented with lockdown.',\n",
      " 'Gatherings of more than 2 people not from the same household banned and police-enforceable.',\n",
      " 'Advice to avoid pubs, clubs, theatres and other public institutions.',\n",
      " 'Advice to self-isolate for 7 days if experiencing a cough or fever symptoms.',\n",
      " 'Nationwide closure of educational institutions',\n",
      " 'Ban of gatherings of more than 10 people',\n",
      " 'Ban on non-essential transport and movement across the country. Police enforcing restrictions with fines.',\n",
      " 'In supermarkets, pharmacies and other essentials keep 2mt distance',\n",
      " 'Isolate at home if showing mild symptoms or fever',\n",
      " 'closure of Cinemas, theaters, theaters, Libraries, Museums, archaeological and historical sites',\n",
      " 'closure of malls, cafes, bars and food outlets',\n",
      " 'Govt endorses flexible working hours and teleworking',\n",
      " 'Video from Greek government recommending keeping 1m distance (27 secs in) "κρατάμε απόσταση τουλάχιστον 1 μέτρου από άλλους και ιδιαίτερα όσους βήχουν, φτέρνίξονται ή έχουν πυρετό" = "keep a distance of at least 1 meter from others and especially those who cough, sneeze or have a fever"',\n",
      " 'Nationwide school closures.',\n",
      " 'Gatherings of more than 100 people banned.',\n",
      " 'State of emergency declared on the 18th and new measures defined on the 19th, to come into place on 00:00 of 22nd March',\n",
      " 'Capacity restrictions of entry to bars and restaurants, encouraged to limit frequency of visits to supermarkets/gyms/public services. Nightclubs closed.',\n",
      " 'Mandatory isolation is imposed for people who are sick or being monitored by health authorities.',\n",
      " 'The closure of certain types of facilities and establishments (such as, for example, those intended for recreational, cultural, sporting and catering activities, among others)',\n",
      " 'The closure of certain types of facilities and establishments (such as, for example, those intended for recreational, cultural, sporting and catering activities, among others)',\n",
      " 'É obrigatória a adoção do regime de teletrabalho sempre que as funções em causa o permitam - google translation: It is mandatory to adopt the teleworking regime whenever the functions in question allow',\n",
      " "States that everyone who isn't in mandatory confinement or an essential worker should only go out in public for essential reasons e.g. health reasons, acquisition of goods, caring for the vulnerable, exercise.",\n",
      " 'Transmission prevention measures in public service establishments: "Maintain distance and space between citizens in all situations" and "Ensure that counter service is provided at the appropriate distance (at least 1 meter, ideally 2)"',\n",
      " 'Gatherings of more than 5 people prohibited (except those with family ties).',\n",
      " 'exemption for children of essential workers',\n",
      " 'Public gatherings >100 people',\n",
      " 'Social distancing and self-isolation for people with flue-like symptoms as of Marc 12 for the whole country, previously only for the Noord-Brabant province',\n",
      " 'Intelligent lockdown, people are still allowed to meet if keeping their distance',\n",
      " 'Social distancing and self-isolation for people with flue-like symptoms as of Marc 12 for the whole country, previously only for the Noord-Brabant province',\n",
      " 'museums, concert halls and theatres were closed following the ban of large gatherings',\n",
      " 'Schools, restaurants, gyms, sports venues, sex clubs, etc. closed as of 18:00hrs March 15',\n",
      " nan], dtype=object)




  • Attributes: (3)


    date :

    2020-05-11 13:47:32.382999

    source :

    Imperial College London

    source_url :

    https://raw.githubusercontent.com/ImperialCollegeLondon/covid19model/master/data/interventions.csv





"
],
"text/plain": [
"\n",
"Dimensions: (location: 83)\n",
"Coordinates:\n",
" * location (location) object 'Austria' 'Austria' ... 'Netherlands'\n",
" date (location) datetime64[ns] 2020-03-14 2020-03-10 ... 2020-03-12\n",
"Data variables:\n",
" type (location) object 'Schools + Universities' ... 'Advice to work from home'\n",
" event (location) object 'Nationwide school closures.' ... nan\n",
"Attributes:\n",
" date: 2020-05-11 13:47:32.382999\n",
" source: Imperial College London\n",
" source_url: https://raw.githubusercontent.com/ImperialCollegeLondon/covi..."
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import coviddata.interventions\n",
"\n",
"coviddata.interventions.imperial_interventions()"
]
}
],
"metadata": {
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}