Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rusty1s/deep-graph-matching-consensus
Implementation of "Deep Graph Matching Consensus" in PyTorch
https://github.com/rusty1s/deep-graph-matching-consensus
geometric-deep-learning graph-matching graph-neural-networks neighborhood-consensus pytorch
Last synced: 1 day ago
JSON representation
Implementation of "Deep Graph Matching Consensus" in PyTorch
- Host: GitHub
- URL: https://github.com/rusty1s/deep-graph-matching-consensus
- Owner: rusty1s
- License: mit
- Created: 2019-10-02T12:49:39.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2021-09-22T07:10:24.000Z (over 3 years ago)
- Last Synced: 2025-01-09T06:09:27.726Z (9 days ago)
- Topics: geometric-deep-learning, graph-matching, graph-neural-networks, neighborhood-consensus, pytorch
- Language: Python
- Homepage: https://openreview.net/forum?id=HyeJf1HKvS
- Size: 3.5 MB
- Stars: 260
- Watchers: 10
- Forks: 48
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[build-image]: https://travis-ci.org/rusty1s/deep-graph-matching-consensus.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/deep-graph-matching-consensus
[docs-image]: https://readthedocs.org/projects/deep-graph-matching-consensus/badge/?version=latest
[docs-url]: https://deep-graph-matching-consensus.readthedocs.io/en/latest/?badge=latest
[coverage-image]: https://codecov.io/gh/rusty1s/deep-graph-matching-consensus/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/deep-graph-matching-consensus?branch=masterDeep Graph Matching Consensus
--------------------------------------------------------------------------------
[![Build Status][build-image]][build-url]
[![Docs Status][docs-image]][docs-url]
[![Code Coverage][coverage-image]][coverage-url]**[Documentation](https://deep-graph-matching-consensus.readthedocs.io)**
This is a PyTorch implementation of **Deep Graph Matching Consensus**, as described in our paper:
Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, Nils M. Kriege: [Deep Graph Matching Consensus](https://openreview.net/forum?id=HyeJf1HKvS) *(ICLR 2020)*
## Requirements
* **[PyTorch](https://pytorch.org/get-started/locally/)** (>=1.2.0)
* **[PyTorch Geometric](https://github.com/rusty1s/pytorch_geometric)** (>=1.5.0)
* **[KeOps](https://github.com/getkeops/keops)** (>=1.1.0)## Installation
```
$ python setup.py install
```Head over to our [documentation](https://deep-graph-matching-consensus.readthedocs.io) for a detailed overview of the `DGMC` module.
## Running examples
We provide training and evaluation procedures for the [PascalVOC with Berkely annotations](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.PascalVOCKeypoints) dataset, the [WILLOW-ObjectClass](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.WILLOWObjectClass) dataset, the [PascalPF](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.PascalPF) dataset, and the [DBP15K](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.DBP15K) dataset.
Experiments can be run via:```
$ cd examples/
$ python pascal.py
$ python willow.py
$ python pascal_pf.py
$ python dbp15k.py --category=zh_en
```
## Cite
Please cite [our paper](https://openreview.net/forum?id=HyeJf1HKvS) if you use this code in your own work:
```
@inproceedings{Fey/etal/2020,
title={Deep Graph Matching Consensus},
author={Fey, M. and Lenssen, J. E. and Morris, C. and Masci, J. and Kriege, N. M.},
booktitle={International Conference on Learning Representations (ICLR)},
year={2020},
}
```## Running tests
```
$ python setup.py test
```