Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/rusty1s/himp-gnn

Hierarchical Inter-Message Passing for Learning on Molecular Graphs
https://github.com/rusty1s/himp-gnn

geometric-deep-learning graph-neural-networks graph-pooling junction-tree molecular-graph pytorch

Last synced: 26 days ago
JSON representation

Hierarchical Inter-Message Passing for Learning on Molecular Graphs

Awesome Lists containing this project

README

        

Hierarchical Inter-Message Passing for Learning on Molecular Graphs

--------------------------------------------------------------------------------

This is a PyTorch implementation of **Hierarchical Inter-Message Passing for Learning on Molecular Graphs**, as described in our paper:

Matthias Fey, Jan-Gin Yuen, Frank Weichert: [Hierarchical Inter-Message Passing for Learning on Molecular Graphs](https://arxiv.org/abs/2006.12179) *(GRL+ 2020)*

## Requirements

* **[PyTorch](https://pytorch.org/get-started/locally/)** (>=1.4.0)
* **[PyTorch Geometric](https://github.com/rusty1s/pytorch_geometric)** (>=1.5.0)
* **[OGB](https://ogb.stanford.edu/)** (>=1.1.0)

## Experiments

Experiments can be run via:

```
$ python train_zinc_subset.py
$ python train_zinc_full.py
$ python train_hiv.py
$ python train_muv.py
$ python train_tox21.py
$ python train_ogbhiv.py
$ python train_ogbpcba.py
```

## Cite

Please cite [our paper](https://arxiv.org/abs/2006.12179) if you use this code in your own work:

```
@inproceedings{Fey/etal/2020,
title={Hierarchical Inter-Message Passing for Learning on Molecular Graphs},
author={Fey, M. and Yuen, J. G. and Weichert, F.},
booktitle={ICML Graph Representation Learning and Beyond (GRL+) Workhop},
year={2020},
}
```