Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/rusty1s/pytorch_sparse
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
https://github.com/rusty1s/pytorch_sparse
autograd pytorch sparse sparse-matrices
Last synced: 5 days ago
JSON representation
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
- Host: GitHub
- URL: https://github.com/rusty1s/pytorch_sparse
- Owner: rusty1s
- License: mit
- Created: 2018-07-28T18:46:53.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-08-15T16:04:00.000Z (5 months ago)
- Last Synced: 2024-10-29T15:48:38.518Z (2 months ago)
- Topics: autograd, pytorch, sparse, sparse-matrices
- Language: Python
- Homepage:
- Size: 656 KB
- Stars: 1,006
- Watchers: 15
- Forks: 147
- Open Issues: 30
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-list - PyTorch Sparse - PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations (Deep Learning Framework / High-Level DL APIs)
- awesome-python-machine-learning-resources - GitHub - 13% open · ⏱️ 22.08.2022): (Pytorch实用程序)
- StarryDivineSky - rusty1s/pytorch_sparse - 稠密矩阵乘法和稀疏-稀疏矩阵乘法,支持多种数据类型,并在 CPU 和 GPU 上实现。该库简化了稀疏张量的操作,用户只需传入索引和值张量即可,并支持对值张量的自动微分。 (其他_机器学习与深度学习)
README
[pypi-image]: https://badge.fury.io/py/torch-sparse.svg
[pypi-url]: https://pypi.python.org/pypi/torch-sparse
[testing-image]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/linting.yml
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_sparse/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_sparse?branch=master# PyTorch Sparse
[![PyPI Version][pypi-image]][pypi-url]
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
[![Code Coverage][coverage-image]][coverage-url]--------------------------------------------------------------------------------
This package consists of a small extension library of optimized sparse matrix operations with autograd support.
This package currently consists of the following methods:* **[Coalesce](#coalesce)**
* **[Transpose](#transpose)**
* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)**
* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)**All included operations work on varying data types and are implemented both for CPU and GPU.
To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)).
Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable.## Installation
### Anaconda
**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run```
conda install pytorch-sparse -c pyg
```### Binaries
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
#### PyTorch 2.5
To install the binaries for PyTorch 2.5.0, simply run
```
pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-2.5.0+${CUDA}.html
```where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
| | `cpu` | `cu118` | `cu121` | `cu124` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | ✅ | ✅ | ✅ |
| **macOS** | ✅ | | | |#### PyTorch 2.4
To install the binaries for PyTorch 2.4.0, simply run
```
pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-2.4.0+${CUDA}.html
```where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
| | `cpu` | `cu118` | `cu121` | `cu124` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | ✅ | ✅ | ✅ |
| **macOS** | ✅ | | | |**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, PyTorch 2.0.0/2.0.1, PyTorch 2.1.0/2.1.1/2.1.2, PyTorch 2.2.0/2.2.1/2.2.2, and PyTorch 2.3.0/2.3.1 (following the same procedure).
For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
You can look up the latest supported version number [here](https://data.pyg.org/whl).### From source
Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
```
$ python -c "import torch; print(torch.__version__)"
>>> 1.7.0$ echo $PATH
>>> /usr/local/cuda/bin:...$ echo $CPATH
>>> /usr/local/cuda/include:...
```If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file.
Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`.
Afterwards, set the environment variable `WITH_METIS=1`.Then run:
```
pip install torch-scatter torch-sparse
```When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:```
export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX"
```## Functions
### Coalesce
```
torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor)
```Row-wise sorts `index` and removes duplicate entries.
Duplicate entries are removed by scattering them together.
For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used.#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`)#### Returns
* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix.
* **value** *(Tensor)* - The coalesced value tensor of sparse matrix.#### Example
```python
import torch
from torch_sparse import coalesceindex = torch.tensor([[1, 0, 1, 0, 2, 1],
[0, 1, 1, 1, 0, 0]])
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])index, value = coalesce(index, value, m=3, n=2)
``````
print(index)
tensor([[0, 1, 1, 2],
[1, 0, 1, 0]])
print(value)
tensor([[6.0, 8.0],
[7.0, 9.0],
[3.0, 4.0],
[5.0, 6.0]])
```### Transpose
```
torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
```Transposes dimensions 0 and 1 of a sparse matrix.
#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`)#### Returns
* **index** *(LongTensor)* - The transposed index tensor of sparse matrix.
* **value** *(Tensor)* - The transposed value tensor of sparse matrix.#### Example
```python
import torch
from torch_sparse import transposeindex = torch.tensor([[1, 0, 1, 0, 2, 1],
[0, 1, 1, 1, 0, 0]])
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])index, value = transpose(index, value, 3, 2)
``````
print(index)
tensor([[0, 0, 1, 1],
[1, 2, 0, 1]])
print(value)
tensor([[7.0, 9.0],
[5.0, 6.0],
[6.0, 8.0],
[3.0, 4.0]])
```### Sparse Dense Matrix Multiplication
```
torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor
```Matrix product of a sparse matrix with a dense matrix.
#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **matrix** *(Tensor)* - The dense matrix.#### Returns
* **out** *(Tensor)* - The dense output matrix.
#### Example
```python
import torch
from torch_sparse import spmmindex = torch.tensor([[0, 0, 1, 2, 2],
[0, 2, 1, 0, 1]])
value = torch.Tensor([1, 2, 4, 1, 3])
matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])out = spmm(index, value, 3, 3, matrix)
``````
print(out)
tensor([[7.0, 16.0],
[8.0, 20.0],
[7.0, 19.0]])
```### Sparse Sparse Matrix Multiplication
```
torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)
```Matrix product of two sparse tensors.
Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force).#### Parameters
* **indexA** *(LongTensor)* - The index tensor of first sparse matrix.
* **valueA** *(Tensor)* - The value tensor of first sparse matrix.
* **indexB** *(LongTensor)* - The index tensor of second sparse matrix.
* **valueB** *(Tensor)* - The value tensor of second sparse matrix.
* **m** *(int)* - The first dimension of first sparse matrix.
* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix.
* **n** *(int)* - The second dimension of second sparse matrix.
* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`)#### Returns
* **index** *(LongTensor)* - The output index tensor of sparse matrix.
* **value** *(Tensor)* - The output value tensor of sparse matrix.#### Example
```python
import torch
from torch_sparse import spspmmindexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
valueA = torch.Tensor([1, 2, 3, 4, 5])indexB = torch.tensor([[0, 2], [1, 0]])
valueB = torch.Tensor([2, 4])indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
``````
print(indexC)
tensor([[0, 1, 2],
[0, 1, 1]])
print(valueC)
tensor([8.0, 6.0, 8.0])
```## Running tests
```
pytest
```## C++ API
`torch-sparse` also offers a C++ API that contains C++ equivalent of python models.
For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`):```
mkdir build
cd build
# Add -DWITH_CUDA=on support for CUDA support
cmake -DCMAKE_PREFIX_PATH="..." ..
make
make install
```