An open API service indexing awesome lists of open source software.

https://github.com/rxn4chemistry/rxn-reaction-preprocessing

Preprocessing of datasets of chemical reactions: standardization, filtering, augmentation, tokenization, etc.
https://github.com/rxn4chemistry/rxn-reaction-preprocessing

chemistry data processing reactions retrosynthesis rxn

Last synced: 18 days ago
JSON representation

Preprocessing of datasets of chemical reactions: standardization, filtering, augmentation, tokenization, etc.

Awesome Lists containing this project

README

          

# RXN reaction preprocessing

[![Actions tests](https://github.com/rxn4chemistry/rxn-reaction-preprocessing/actions/workflows/tests.yaml/badge.svg)](https://github.com/rxn4chemistry/rxn-reaction-preprocessing/actions)

This repository is devoted to preprocessing chemical reactions: standardization, filtering, etc.
It also includes code for stable train/test/validation splits and data augmentation.

Links:
* [GitHub repository](https://github.com/rxn4chemistry/rxn-reaction-preprocessing)
* [Documentation](https://rxn4chemistry.github.io/rxn-reaction-preprocessing/)
* [PyPI package](https://pypi.org/project/rxn-reaction-preprocessing/)

## System Requirements

This package is supported on all operating systems.
It has been tested on the following systems:
* macOS: Big Sur (11.1)
* Linux: Ubuntu 18.04.4

A Python version of 3.7 or greater is recommended.

## Installation guide

The package can be installed from Pypi:
```bash
pip install rxn-reaction-preprocessing[rdkit]
```
You can leave out `[rdkit]` if you prefer to install `rdkit` manually (via Conda or Pypi).

For local development, the package can be installed with:
```bash
pip install -e ".[dev]"
```

## Usage
The following command line scripts are installed with the package.

### rxn-data-pipeline
Wrapper for all other scripts. Allows constructing flexible data pipelines. Entrypoint for Hydra structured configuration.

For an overview of all available configuration parameters and default values, run: `rxn-data-pipeline --cfg job`.

Configuration using YAML (see the file `config.py` for more options and their meaning):
```yaml
defaults:
- base_config

data:
path: /tmp/inference/input.csv
proc_dir: /tmp/rxn-preproc/exp
common:
sequence:
# Define which steps and in which order to execute:
- IMPORT
- STANDARDIZE
- PREPROCESS
- SPLIT
- TOKENIZE
fragment_bond: TILDE
preprocess:
min_products: 0
split:
split_ratio: 0.05
tokenize:
input_output_pairs:
- inp: ${data.proc_dir}/${data.name}.processed.train.csv
out: ${data.proc_dir}/${data.name}.processed.train
- inp: ${data.proc_dir}/${data.name}.processed.validation.csv
out: ${data.proc_dir}/${data.name}.processed.validation
- inp: ${data.proc_dir}/${data.name}.processed.test.csv
out: ${data.proc_dir}/${data.name}.processed.test
```
```bash
rxn-data-pipeline --config-dir . --config-name example_config
```

Configuration using command line arguments (example):
```bash
rxn-data-pipeline \
data.path=/path/to/data/rxns-small.csv \
data.proc_dir=/path/to/proc/dir \
common.fragment_bond=TILDE \
rxn_import.data_format=TXT \
tokenize.input_output_pairs.0.out=train.txt \
tokenize.input_output_pairs.1.out=validation.txt \
tokenize.input_output_pairs.2.out=test.txt
```

## Note about reading CSV files
Pandas appears not to always be able to write a CSV and re-read it if it contains Windows carriage returns.
In order for the scripts to work despite this, all the `pd.read_csv` function calls should include the argument `lineterminator='\n'`.

## Examples

### A pipeline supporting augmentation

A config supporting augmentation of the training split called `train-augmentation-config.yaml`:
```yaml
defaults:
- base_config

data:
name: pipeline-with-augmentation
path: /tmp/file-with-reactions.txt
proc_dir: /tmp/rxn-preprocessing/experiment
common:
sequence:
# Define which steps and in which order to execute:
- IMPORT
- STANDARDIZE
- PREPROCESS
- SPLIT
- AUGMENT
- TOKENIZE
fragment_bond: TILDE
rxn_import:
data_format: TXT
preprocess:
min_products: 1
split:
input_file_path: ${preprocess.output_file_path}
split_ratio: 0.05
augment:
input_file_path: ${data.proc_dir}/${data.name}.processed.train.csv
output_file_path: ${data.proc_dir}/${data.name}.augmented.train.csv
permutations: 10
tokenize: false
random_type: rotated
tokenize:
input_output_pairs:
- inp: ${data.proc_dir}/${data.name}.augmented.train.csv
out: ${data.proc_dir}/${data.name}.augmented.train
reaction_column_name: rxn_rotated
- inp: ${data.proc_dir}/${data.name}.processed.validation.csv
out: ${data.proc_dir}/${data.name}.processed.validation
- inp: ${data.proc_dir}/${data.name}.processed.test.csv
out: ${data.proc_dir}/${data.name}.processed.test
```
```bash
rxn-data-pipeline --config-dir . --config-name train-augmentation-config
```