Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/s-rb/ml_usdrateprediction
Skillbox Python DataScience Intensive
https://github.com/s-rb/ml_usdrateprediction
Last synced: 24 days ago
JSON representation
Skillbox Python DataScience Intensive
- Host: GitHub
- URL: https://github.com/s-rb/ml_usdrateprediction
- Owner: s-rb
- Created: 2020-03-28T06:35:32.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2024-01-23T20:42:05.000Z (12 months ago)
- Last Synced: 2024-11-05T21:16:54.548Z (2 months ago)
- Language: Jupyter Notebook
- Size: 116 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ML_UsdRatePrediction
Skillbox Python DataScience Intensive![Python](https://img.shields.io/badge/-Python-05122A?style=flat&logo=Python&logoColor=fffffb) ![Pandas](https://img.shields.io/badge/-Pandas-05122A?style=flat&logo=Pandas) ![MathPlotLib](https://img.shields.io/badge/-MathPlotLib-05122A?style=flat&logo=MathPlotLib) ![Scikit-learn](https://img.shields.io/badge/-Scikit_learn-05122A?style=flat&logo=sklearn)
Skillbox DataScience training intensive "Predicting the dollar exchange rate" using Python.
Prediction is made based on historical data.
Libraries used:
- Pandas - for getting data from an Excel file,
- MathPlotLib for plotting.
- Scikit-learn (SKLearn) for algorithms/The mean absolute error (mean_absolute_error from sklearn.metrics) was used for evaluation.
Algorithms:
- LinearRegression,
- KNeighborsRegressor,
- MLPRegressor,
- RandomForestRegressor,Automation of parameter selection and cross-validation:
- GridSearchCV from sklearn.model_selection