An open API service indexing awesome lists of open source software.

https://github.com/s1998/all-but-the-top


https://github.com/s1998/all-but-the-top

abusive-language davidson deep-learning embeddings f1-acc hate-speech iclr iclr2018 natural-language-processing word-embeddings

Last synced: 6 months ago
JSON representation

Awesome Lists containing this project

README

          

# All-but-the-top

Implementation of the paper [All-but-the-top](https://openreview.net/forum?id=HkuGJ3kCb) from ICLR 2018.

## Instructions to use

To run, use the file runner.py

Libraries used: Keras with tensorflow backend.

### Sample plot

![image-of-principal-components](https://raw.githubusercontent.com/s1998/All-but-the-top/master/images/gloveFreqPLot.png)

Two principal components of the embeddings with color map for frequency.

## Results

Results obtained on Davidson et al (2017) using two different embeddings.


Model
Preprocessed
Postprocessed



P
R
F1
Acc
P
R
F1
Acc


AvgPool
0.811
0.721
0.756
0.762
0.855
0.887
0.862
0.887


MaxPool
0.779
0.834
0.792
0.787
0.888
0.903
0.884
0.903


CNN
0.885
0.903
0.880
0.903
0.890
0.905
0.892
0.905


GRU
0.894
0.907
0.898
0.907
0.899
0.914
0.902
0.914

Effects of using post processing on Glove Embeddings on Davidson et Al(2017)


Model
Preprocessed
Postprocessed



P
R
F1
Acc
P
R
F1
Acc


AvgPool
0.787
0.732
0.754
0.782
0.898
0.893
0.868
0.883


MaxPool
0.703
0.756
0.724
0.751
0.891
0.887
0.872
0.887


CNN
0.838
0.887
0.861
0.887
0.875
0.893
0.875
0.891


GRU
0.854
0.904
0.878
0.904
0.910
0.903
0.881
0.903

Effects of using post processing on Word2Vec Embeddings on Davidson et Al(2017)