https://github.com/s1998/all-but-the-top
https://github.com/s1998/all-but-the-top
abusive-language davidson deep-learning embeddings f1-acc hate-speech iclr iclr2018 natural-language-processing word-embeddings
Last synced: 6 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/s1998/all-but-the-top
- Owner: s1998
- Created: 2019-09-29T23:44:14.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-11-26T15:14:38.000Z (almost 6 years ago)
- Last Synced: 2025-02-01T18:27:53.349Z (8 months ago)
- Topics: abusive-language, davidson, deep-learning, embeddings, f1-acc, hate-speech, iclr, iclr2018, natural-language-processing, word-embeddings
- Language: Python
- Size: 80.1 KB
- Stars: 2
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# All-but-the-top
Implementation of the paper [All-but-the-top](https://openreview.net/forum?id=HkuGJ3kCb) from ICLR 2018.
## Instructions to use
To run, use the file runner.py
Libraries used: Keras with tensorflow backend.
### Sample plot

Two principal components of the embeddings with color map for frequency.
## Results
Results obtained on Davidson et al (2017) using two different embeddings.
Model
Preprocessed
Postprocessed
P
R
F1
Acc
P
R
F1
Acc
AvgPool
0.811
0.721
0.756
0.762
0.855
0.887
0.862
0.887
MaxPool
0.779
0.834
0.792
0.787
0.888
0.903
0.884
0.903
CNN
0.885
0.903
0.880
0.903
0.890
0.905
0.892
0.905
GRU
0.894
0.907
0.898
0.907
0.899
0.914
0.902
0.914
Effects of using post processing on Glove Embeddings on Davidson et Al(2017)
Model
Preprocessed
Postprocessed
P
R
F1
Acc
P
R
F1
Acc
AvgPool
0.787
0.732
0.754
0.782
0.898
0.893
0.868
0.883
MaxPool
0.703
0.756
0.724
0.751
0.891
0.887
0.872
0.887
CNN
0.838
0.887
0.861
0.887
0.875
0.893
0.875
0.891
GRU
0.854
0.904
0.878
0.904
0.910
0.903
0.881
0.903
Effects of using post processing on Word2Vec Embeddings on Davidson et Al(2017)