An open API service indexing awesome lists of open source software.

https://github.com/saadsalmanakram/diffusion-ss

Learn everything you need to know about diffusion...
https://github.com/saadsalmanakram/diffusion-ss

diffusion diffusion-model diffusion-models stable-diffusion

Last synced: about 1 month ago
JSON representation

Learn everything you need to know about diffusion...

Awesome Lists containing this project

README

          

---

# 🌫️ Diffusion Masterclass – Understanding & Implementing Diffusion Models

![Diffusion Models](https://cdn.pixabay.com/photo/2024/03/04/14/17/ai-generated-8612487_1280.jpg)

## πŸ“ Introduction

**Diffusion models** are a class of generative models that have recently gained prominence in deep learning, particularly in **image synthesis, denoising, and probabilistic modeling**. These models iteratively **add noise to data** and then learn to reverse the process to generate realistic samples.

This repository serves as a **comprehensive guide** to mastering **Diffusion Models**, covering theoretical foundations, practical implementations, and applications in AI.

πŸ“Œ **Understand the mathematics behind diffusion models**
πŸ“Œ **Implement diffusion models from scratch using PyTorch**
πŸ“Œ **Explore applications in image generation, denoising, and more**
πŸ“Œ **Use Stable Diffusion, DDPM, and advanced diffusion techniques**

---

## πŸš€ Features

- πŸ“– **Theory & Fundamentals** of Diffusion Models
- πŸ–ΌοΈ **Image Generation with Denoising Diffusion Probabilistic Models (DDPM)**
- ⚑ **Implementation in PyTorch**
- 🌍 **Stable Diffusion & Latent Diffusion Models (LDMs)**
- πŸ” **Exploration of Variational Diffusion Models & Score-Based Methods**
- πŸ“ **Jupyter notebooks with step-by-step explanations**

---

## πŸ“‚ Repository Structure

```
Diffusion-ss/
│── theory/ # Theory & mathematical foundations
│── notebooks/ # Jupyter notebooks with implementations
│── models/ # PyTorch implementations of diffusion models
│── applications/ # Real-world applications (image generation, denoising, etc.)
│── experiments/ # Custom diffusion experiments & modifications
│── README.md # Documentation
└── requirements.txt # Python dependencies
```

---

## πŸ† Getting Started

### 1️⃣ Clone the Repository
```bash
git clone https://github.com/saadsalmanakram/Diffusion-ss.git
cd Diffusion-ss
```

### 2️⃣ Install Dependencies
```bash
pip install -r requirements.txt
```

### 3️⃣ Run a Simple Diffusion Model
```bash
python models/ddpm.py
```

---

## πŸ” Topics Covered

### πŸ“– **Theory & Fundamentals**
- What are **Diffusion Models**?
- Forward & Reverse Diffusion Process
- **Mathematical Formulation** (Stochastic Differential Equations)
- **DDPM vs. Score-Based Generative Models**

### πŸ–ΌοΈ **Image Generation with Diffusion Models**
- Implementing **Denoising Diffusion Probabilistic Models (DDPM)**
- Training diffusion models on **CIFAR-10, CelebA, and ImageNet**
- **Latent Diffusion Models (LDMs) & Stable Diffusion**

### ⚑ **Diffusion Models in PyTorch**
- Building a simple **DDPM from scratch**
- Training a model to **generate high-resolution images**
- Implementing **U-Net-based diffusion architectures**

### πŸ” **Advanced Diffusion Techniques**
- **Classifier-free guidance** for improved generation
- **Conditional diffusion models** (text-to-image)
- **Speeding up inference using fast sampling methods (DDIM, PNDM)**

### πŸš€ **Real-World Applications**
- **Image Denoising & Super-Resolution**
- **Text-to-Image Generation (Stable Diffusion, Imagen, DALLΒ·E 2)**
- **Video & 3D Diffusion Models**

---

## πŸš€ Example Code

### πŸ–ΌοΈ **Simple Forward Diffusion Process**
```python
import torch
import torch.nn.functional as F

def forward_diffusion(x, noise, t, betas):
sqrt_alpha = (1 - betas).cumprod(dim=0).sqrt()
return sqrt_alpha[t] * x + torch.sqrt(1 - sqrt_alpha[t]) * noise

x = torch.randn(1, 3, 64, 64) # Random image
noise = torch.randn_like(x)
betas = torch.linspace(0.0001, 0.02, 1000) # Noise schedule
diffused_x = forward_diffusion(x, noise, 100, betas)
```

### πŸ”„ **Reverse Process with Learned Model**
```python
import torch.nn as nn

class SimpleUNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)

def forward(self, x, t):
x = F.relu(self.conv1(x))
return self.conv2(x)

model = SimpleUNet()
prediction = model(diffused_x, 100) # Reverse step prediction
```

---

## πŸ”₯ Cutting-Edge Diffusion Models

πŸ“Œ **Stable Diffusion** – Latent space diffusion for **high-resolution text-to-image generation**
πŸ“Œ **DALLΒ·E 2 & Imagen** – **Transformer-based conditional diffusion models**
πŸ“Œ **Score-Based Generative Models** – SDE-based methods for **high-fidelity image synthesis**
πŸ“Œ **Variational Diffusion Models (VDM)** – **Improving likelihood-based training**

---

## πŸ† Contributing

Contributions are welcome! πŸš€

πŸ”Ή **Fork** the repository
πŸ”Ή Create a new branch (`git checkout -b feature-name`)
πŸ”Ή Commit changes (`git commit -m "Added DDIM sampling"`)
πŸ”Ή Push to your branch (`git push origin feature-name`)
πŸ”Ή Open a pull request

---

## πŸ“œ License

This project is licensed under the **MIT License** – feel free to use, modify, and share the code.

---

## πŸ“¬ Contact

πŸ“§ **Email:** saadsalmanakram1@gmail.com
🌐 **GitHub:** [SaadSalmanAkram](https://github.com/saadsalmanakram)
πŸ’Ό **LinkedIn:** [Saad Salman Akram](https://www.linkedin.com/in/saadsalmanakram/)

---

⚑ **Master Diffusion Models & Unlock the Future of Generative AI!** ⚑

---