Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sabaudian/rag_agent_project
LangGraph RAG agent - Travel planner advisor
https://github.com/sabaudian/rag_agent_project
chromadb jupyter-notebook langchain langgraph llama llm-agents nomic ollama python rag rag-agents
Last synced: 10 days ago
JSON representation
LangGraph RAG agent - Travel planner advisor
- Host: GitHub
- URL: https://github.com/sabaudian/rag_agent_project
- Owner: Sabaudian
- Created: 2024-10-24T15:55:55.000Z (23 days ago)
- Default Branch: main
- Last Pushed: 2024-10-28T10:23:10.000Z (19 days ago)
- Last Synced: 2024-11-05T17:27:10.916Z (11 days ago)
- Topics: chromadb, jupyter-notebook, langchain, langgraph, llama, llm-agents, nomic, ollama, python, rag, rag-agents
- Language: Jupyter Notebook
- Homepage:
- Size: 1.17 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
[![Pycharm Badge](https://img.shields.io/badge/PyCharm-000000.svg?&style=for-the-badge&logo=PyCharm&logoColor=white)](https://www.jetbrains.com/pycharm/)
[![Python Badge](https://img.shields.io/badge/Python-3776AB?style=for-the-badge&logo=python&logoColor=white)](https://www.python.org/downloads/release/python-3120/)
![LangChain Badge](https://img.shields.io/badge/LangChain-1C3C3C?logo=langchain&logoColor=fff&style=for-the-badge)
[![Ollama Badge](https://img.shields.io/badge/Ollama-000000.svg?style=for-the-badge&logo=Ollama&logoColor=white)](https://ollama.com)## General Information
- **Python** version is: 3.12.0 (*if you need to download it, click on the Python badge*)
- **Ollama** is necessary to run this project (*if you need to download it, click on the Ollama badge*)- Once Ollama is downloaded, run via terminal:
```
ollama run llama3.2
```## LangGraph RAG agent - Travel planner advisor
This project builds a RAG agent using LangChain, LangGraph, and an open-source LLM from Ollama (llama3.2).
Retrieves travel-related information by crawling a website, stores the data thanks to Chroma DB, and uses Nomic embeddings for document processing.
The result is a travel planner advisor that provides personalized travel suggestions.