https://github.com/sahil210695/convolution-evolution
This is to see how a kernel will convolve over an image and what will be its output after convolution
https://github.com/sahil210695/convolution-evolution
cnn convolutional-neural-networks data-science image-kernel image-processing numpy numpy-neural-network python streamlit
Last synced: 3 months ago
JSON representation
This is to see how a kernel will convolve over an image and what will be its output after convolution
- Host: GitHub
- URL: https://github.com/sahil210695/convolution-evolution
- Owner: sahil210695
- Created: 2020-07-27T15:54:55.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2020-07-27T16:08:17.000Z (almost 5 years ago)
- Last Synced: 2025-01-21T11:45:37.335Z (5 months ago)
- Topics: cnn, convolutional-neural-networks, data-science, image-kernel, image-processing, numpy, numpy-neural-network, python, streamlit
- Language: Python
- Homepage:
- Size: 15.6 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Convolution is Evolution 😎
### This is to see how a kernel will convolve over an image and what will be its output after convolution#### Kernels that we are using:
- **Horizontal** kernel will extract all *horizontal* edges
- **Vertical** kernel will extract all *vertical* edges
- **Edge** kernel will extract all *edges*#### Demo Image
#### Kernels with their output:
1. Horizontal Kernel```python
np.array([
[-1, -1, -1],
[ 0, 0, 0],
[ 1, 1, 1],
])
```
2. Vertical Kernel
```python
np.array([
[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1],
])
```
3. Edge Kernel
```python
np.array([
[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1],
])
```
#### UI
I have created UI for this demo using **[Streamlit](https://www.streamlit.io/)**- `pip install streamlit`
- `streamlit run app.py`