An open API service indexing awesome lists of open source software.

https://github.com/saidsef/kubeflow-on-k8s

Kubeflow running on Kubernetes - Machine Learning Toolkit for Kubernetes
https://github.com/saidsef/kubeflow-on-k8s

kubeflow kubernetes machine-learning ml notebook-jupyter workflow-engine

Last synced: 8 days ago
JSON representation

Kubeflow running on Kubernetes - Machine Learning Toolkit for Kubernetes

Awesome Lists containing this project

README

          

# Kubeflow on Kubernetes Cluster

Kubeflow Pipelines are a new component of Kubeflow that can help you compose, deploy, and manage end-to-end (optionally hybrid) machine learning workflows. Because they are a useful component of Kubeflow, they give you a no lock-in way to advance from prototyping to production. Kubeflow Pipelines also support rapid and reliable experimentation, so users can try many ML techniques to identify what works best for their application.

## Useful Links
- [Getting Started Kubeflow Pipelines](https://cloud.google.com/blog/products/ai-machine-learning/getting-started-kubeflow-pipelines)
- [Introducing Kubeflow Composable](https://kubernetes.io/blog/2017/12/introducing-kubeflow-composable/)

# Kubeflow Version
- Kubeflow v0.4.1

# Prerequisites
- Git
- Ksonnet
- Golang
- Kubernetes Cluster
- Kubectl

# Components
- ambassador
- argo
- centraldashboard
- jupyterhub
- katib
- params.libsonnet
- pytorch-operator
- seldon
- spartakus
- tf-job-operator

# Deployment

```shell
export KUBEFLOW_TAG=0.4.1
export NAMESPACE=kubeflow

git clone https://github.com/saidsef/kubeflow-on-k8s.git

cd kubeflow-on-k8s/

git submodule foreach git pull origin master

mkdir -p /mnt/{katib-mysql,kf-ml-data,kf-openvino,kf-minio}

kubectl apply -f ./deployment --namespace ${NAMESPACE}

ks apply default --namespace ${NAMESPACE} # append `--dry-run` for dry run

kubectl get all -n ${NAMESPACE}

```