Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/sajjad425/kmeans_clustering

The dataset includes the following columns: Id, SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm, and Species. We will use the Sepal and Petal measurements to predict the optimum number of clusters using the KMeans algorithm.
https://github.com/sajjad425/kmeans_clustering

kmeans-clustering kmeans-clustering-algorithm

Last synced: 2 days ago
JSON representation

The dataset includes the following columns: Id, SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm, and Species. We will use the Sepal and Petal measurements to predict the optimum number of clusters using the KMeans algorithm.

Awesome Lists containing this project

README

        

# kmeans_clustering
## Summary of Steps:
1. **Import necessary libraries.**
2. **Preprocess the data:** Standardized the features to ensure equal contribution.
3. **Determine the optimal number of clusters using the Elbow method:** The Elbow graph indicated 3 as the optimal number.
4. **Apply KMeans clustering:** Clustered the data into 3 clusters.
5. **Visualize the clusters:** Created a scatter plot to visually represent the clusters.