Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sajjad425/kmeans_clustering
The dataset includes the following columns: Id, SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm, and Species. We will use the Sepal and Petal measurements to predict the optimum number of clusters using the KMeans algorithm.
https://github.com/sajjad425/kmeans_clustering
kmeans-clustering kmeans-clustering-algorithm
Last synced: 2 days ago
JSON representation
The dataset includes the following columns: Id, SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm, and Species. We will use the Sepal and Petal measurements to predict the optimum number of clusters using the KMeans algorithm.
- Host: GitHub
- URL: https://github.com/sajjad425/kmeans_clustering
- Owner: sajjad425
- Created: 2024-07-12T19:13:13.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-07-12T19:18:57.000Z (4 months ago)
- Last Synced: 2024-07-12T21:37:41.085Z (4 months ago)
- Topics: kmeans-clustering, kmeans-clustering-algorithm
- Language: Jupyter Notebook
- Homepage:
- Size: 105 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# kmeans_clustering
## Summary of Steps:
1. **Import necessary libraries.**
2. **Preprocess the data:** Standardized the features to ensure equal contribution.
3. **Determine the optimal number of clusters using the Elbow method:** The Elbow graph indicated 3 as the optimal number.
4. **Apply KMeans clustering:** Clustered the data into 3 clusters.
5. **Visualize the clusters:** Created a scatter plot to visually represent the clusters.