Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/saketkc/moca

:m: Tool for motif conservation analysis
https://github.com/saketkc/moca

bioinformatics chip-seq motif-discovery transcription-factor-binding transcription-factors

Last synced: 24 days ago
JSON representation

:m: Tool for motif conservation analysis

Awesome Lists containing this project

README

        

==========================================
MoCA: Tool for MOtif Conservation Analysis
==========================================

.. image:: https://img.shields.io/pypi/v/moca.svg
:target: https://pypi.python.org/pypi/moca/

.. image:: https://img.shields.io/travis/saketkc/moca.svg
:target: https://travis-ci.org/saketkc/moca

.. image:: https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg
:target: https://bioconda.github.io/recipes/moca/README.html

.. image:: https://coveralls.io/repos/github/saketkc/moca/badge.svg?branch=master
:target: https://coveralls.io/github/saketkc/moca?branch=master

.. image:: https://zenodo.org/badge/50889586.svg
:target: https://zenodo.org/badge/latestdoi/50889586

LICENSE
-------
ISC

Installation
------------

Requirements
~~~~~~~~~~~~

* pybedtools
* biopython
* pandas
* scipy
* statsmodels
* pybigwig
* seaborn
* MEME==4.10.2

NOTE: MoCA also relies on `fasta-shuffle-letters` that was introduced in MEME `4.11.0`
hence if you are using `4.10.2` make sure the `fasta-shuffle-letters` is the updated one.

For a sample script see `travis/install_meme.sh`

Using Conda
~~~~~~~~~~~
``moca`` is most compatible with the `conda`_ environment.

::

$ conda config --add channels bioconda
$ conda install moca

Using pip
~~~~~~~~~

::

$ pip install moca

For development
~~~~~~~~~~~~~~~

::

$ git clone https://github.com:saketkc/moca.git
$ cd moca
$ conda env create -f environment.yml python=2.7
$ source activate mocadev
$ python setup.py install

Workflow
--------

MoCA makes use of PhyloP/PhastCons/GERP scores to assess the quality of a
motif, the hypothesis being a 'true motif' would evolve slower as compared
to its surrounding(flanking sequences).

.. image:: https://raw.githubusercontent.com/saketkc/moca_web/master/docs/abstract/workflow.png

Usage
-----

::

$ moca
Usage: moca [OPTIONS] COMMAND [ARGS]...

moca: Motif Conservation Analysis

Options:
--version Show the version and exit.
--help Show this message and exit.

Commands:
find_motifs Run meme to locate motifs and create...
plot Create stacked conservation plots

Motif analysis using MEME
~~~~~~~~~~~~~~~~~~~~~~~~~

MoCA can perform motif analysis for you given a bedfile containing
ChIP-Seq peaks.

Genome builds and MEME binary locations are specified through a configuraton file.
A sample configuration file is available: `tests/data/application.cfg` and should be
self-explanatory.

moca find_motifs
~~~~~~~~~~~~~~~~

::

$ moca find_motifs -h
Usage: moca find_motifs [OPTIONS]

Run meme to locate motifs and create conservation stacked plots

Options:
-i, --bedfile TEXT Bed file input [required]
-o, --oc TEXT Output Directory [required]
-c, --configuration TEXT Configuration file [required]
--slop-length INTEGER Flanking sequence length [required]
--flank-motif INTEGER Length of sequence flanking motif [required]
--n-motif INTEGER Number of motifs
-t, --cores INTEGER Number of parallel MEME jobs [required]
-g, -gb, --genome-build TEXT Key denoting genome build to use in
configuration file [required]
--show-progress Print progress
-h, --help Show this message and exit.

moca plot
~~~~~~~~~

::

$ moca plot -h
Usage: moca plot [OPTIONS]

Create stacked conservation plots

Options:
--meme-dir, --meme_dir TEXT MEME output directory [required]
--centrimo-dir, --centrimo_dir TEXT
Centrimo output directory [required]
--fimo-dir-sample, --fimo_dir_sample TEXT
Sample fimo.txt [required]
--fimo-dir-control, --fimo_dir_control TEXT
Control fimo.txt [required]
--name TEXT Plot title
--flank-motif INTEGER Length of sequence flanking motif
[required]
--motif INTEGER Motif number
-o, --oc TEXT Output Directory [required]
-c, --configuration TEXT Configuration file [required]
--show-progress Print progress
-g, -gb, --genome-build TEXT Key denoting genome build to use in
configuration file [required]
-h, --help Show this message and exit.

Example
-------

Most users will require using the command line version only:

::

$ moca find_motifs -i encode_test_data/ENCFF002DAR.bed\
-c tests/data/application.cfg -g hg19 --show-progress

Creating plots if you already have run MEME and Centrimo:

::

$ moca plot -c tests/data/application.cfg -g hg19\
--meme-dir moca_output/meme_out\
--centrimo-dir moca_output/centrimo_out\
--fimo-dir-sample moca_output/meme_out/fimo_out_1\
--fimo-dir-control moca_output/meme_out/fimo_random_1\
--name ENCODEID

.. image:: http://www.saket-choudhary.me/moca/_static/img/ENCFF002CEL.png

There is also a structured API available,
however it might be missing examples and documentation at places.

API Documentation
-----------------

http://saketkc.github.io/moca/

Tests
-----
``moca`` is mostly extensively tested. See `code-coverage`_.

Run tests locally

::

$ ./runtests.sh

Credits
---------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _`MoCA0.1.0`: https://github.com/saketkc/moca_web
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
.. _`conda`: http://conda.pydata.org/docs/using/using.html
.. _`code-coverage`: https://coveralls.io/github/saketkc/moca?branch=master